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Abstract—We propose a novel framework for determining
the conceptual difficulty of a domain-specific text document
without using any external lexicon. Conceptual difficulty relates
to finding the reading difficulty of domain-specific documents.
Previous approaches to tackling domain-specific readability
problem have heavily relied upon an external lexicon, which
limits the scalability to other domains. Our model can be
readily applied in domain-specific vertical search engines to
re-rank documents according to their conceptual difficulty.
We develop an unsupervised and principled approach for
computing a term’s conceptual difficulty in the latent space.
Our approach also considers transitions between the segments
generated in sequence. It performs better than the current
state-of-the-art comparative methods.
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I. INTRODUCTION

It has been studied that an increasing number of peo-
ple often search for information outside their domain of
specialization [1]. But it becomes difficult to automatically
determine the expertise level of the user from the query due
to the fact that many queries are short and ambiguous [2] and
may not directly indicate the true reading expertise of the
searcher. Recently, Google has tried to address the problem
by introducing a new interface under “More Search Tools”
to let users specify their reading level. We investigate a novel
unsupervised framework for determining the conceptual
difficulty of a text document. Our model can be readily
applied in domain-specific vertical search engines to re-rank
documents according to their conceptual difficulty.
Our model makes use of Latent Semantic Indexing (LSI)

[3] to migrate from the word space to the concept space.
We compute each term’s conceptual difficulty based on its
geometry in the latent space. Our model also considers the
notion of “conceptual transitions” in the concept space. The
value aggregated after sequential term scanning for a docu-
ment quantifies the conceptual difficulty of that document.
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and Interface Technologies.

This value will be used to re-rank the results obtained from
a general purpose IR system.
A note on the use of terminology. Our work mainly falls

within the purview of determining the reading difficulty
of text documents. The term readability has been used
in different ways [4] in different works such as concept
based readability in [5], comprehensibility in [4], domain-
specific iterative readability in [6] and technical difficulty
in [7] and [8]. We focus on domain-specific documents,
and hence use the term conceptual difficulty in this paper.
Conceptual difficulty relates to finding the reading difficulty
of a domain-specific document.
Our main contribution mainly lies in the way we digress

from traditional readability based approaches and use a
conceptual model to score the technical importance of a term
based on its co-occurrence. We propose a linear embedding
model to linearly embed a term vector with the document
vectors in the concept space. We measure cohesion based
on similarity between the segments using an unsupervised
approach. We conduct extensive experiments and show the
effectiveness of our approach.

II. RELATED WORK

The problem of determining the reading difficulty in
domain-specific IR is not new. For example, in [5] the
authors presented concept based readability method where
they used a domain-specific ontology to compute document
scope and document cohesion of domain-specific terms in
a document. One limitation of their approach is the re-
quirement of a domain-specific ontology to capture domain-
specific terms in a document. Zhao et al., [6] tried to address
this problem where they proposed a domain-specific iterative
readability computation method. Their approach is based
on the notion of popular link analysis algorithms such as
HITS and SALSA. However, their method relies on some
seed set of domain-specific terms. This is problematic as
one would need seed set of terms for every domain. We
addressed the problem in our preliminary work where we
presented technical difficulty models in [7] and [8]. We
used Latent Semantic Indexing (LSI) [9] to capture domain-
specific terms in a document. Although we could achieve
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better results than the traditional readability methods, our
preliminary approach lacked a solid theoretical foundation.
Traditional readability methods [10] have been used in

several applications such as finding grade level of texts.
These methods mainly consider surface level features of
texts such as number of syllables, sentence length, word
length etc. They also fail to give precise prediction on web
pages [11]. One shortcoming is that readability methods
completely disregard an understanding of the complexity
of ideas inherent in text [12]. These methods simply look
at the surface-level features. Another shortcoming is that
readability methods do not consider cohesion, which forms
one of the ingredients in comprehension and computing the
difficulty of texts [13]. In addition, they completely disregard
the context in which a term has been used [7]. For example,
“star” comprising of one syllable can be interpreted as a
domain-specific term in Science and Astronomy. In contrast,
it can be treated as a common term in other domains, for
example, Movies. Despite having several shortcomings, they
still remain a dominant tool for finding the reading difficulty
of texts because of their ease of use and simplicity.
Some supervised learning approaches have also been

adopted to tackle the problem of readability. In [11], the
authors discussed smoothed unigram model to predict read-
ability of texts. The authors have used a small corpus
of text documents classified into different American grade
levels and built a classifier based on a unigram language
model to predict readability of texts. Bendersky et al., [14]
described a quality biased approach to improve ranking in a
general purpose web search engine where the authors used
readability and cohesive nature of texts as one of the features
in ranking. In [15], the authors used SVM to predict reading
difficulty of texts using syntactic and vocabulary based
features. Kumaran et al., [16] described topic familiarity
problem in texts. They have mentioned that topic familiarity
is different from traditional readability. They have used sev-
eral readability features in order to train a classifier to predict
reading difficulty of texts. The authors found that stopwords
is a useful feature in their classifier. Heilman et al., [17] used
grammatical features to train their classifier. Pitler et al.,
[18] described several linguistic features in their classifier
and obtained significant results. In [19] the authors have
used diverse features from text including language model
to train a classifier. Determination of reading level from
queries has been described in [20] where the authors trained
a support vector machine. Recently, few works have tried
to address readability problem by building user models and
personalizing search results [4], [21] and [22]. This direction
requires query log data with individual user session details.
This could lead to privacy problems [23]. One limitation in
supervised learning approaches is that it requires annotated
data to train a classifier. Obtaining annotated data might be
expensive and time consuming at times.
When elements of text tend to hang together [24], the state

is called cohesion. Cohesion helps in comprehension [13].
Halliday and Hasan [13] stated that the start of the text will
not be cohesive with the later sections of text. We use this
conclusion in this paper where we consider that maintaining
the term order in a text document is important.

III. SEQUENTIAL TERM TRANSITION MODEL (STTM)

A. Overview

Our proposed framework which we term as “Sequential
Term Transition Model (STTM)” considers two components
for determining the accumulated conceptual difficulty of a
text document. These two components are technical term
difficulty and sequential segment cohesion. Reading diffi-
culty of a document is directly proportional to individual
term’s difficulty. The more cohesive the terms are, the more
technically simple a document will be. We group multiple
terms in sequence into variable length segments and measure
similarity between the sequences of segments in a document.

B. The Latent Space

We make use of Latent Semantic Indexing (LSI) to
derive latent information that plays a major role in our
framework. One essential component in LSI is Singular
Value Decomposition (SVD). Consider a domain, the input
to LSI is a T ×D term-document matrix, W, where T is the
number of terms in the vocabulary and D is the number of
documents in the collection. The term-document matrix can
be constructed by considering the product of term-frequency
(tf) and inverse document frequency denoted as (idf). SVD
factorizes W into three matrices as shown in Equation 1.

W ≈ Ŵ = USV
T (1)

where U is a T × f matrix of left singular vectors, S is
a f × f diagonal matrix of singular values, V is a D × f

matrix of right singular vectors, where f << min(T, D) is
the number of factors, and V

T denotes matrix transposition
of V.
Traditional vector space model [25] cannot find new

structural relationships between terms and their documents
in the collection [26]. By considering SVD, one of our aims
is to reduce the dimension of the space and thus reduce the
effect of noise. Moreover, considering this scheme will help
bring close some terms which are coherent to the document.
For example, if a document describes about Astronomy,
terms such as “star” will come close to the document in the
latent space [7] and [8]. Then we can compute the domain-
specific importance or its difficulty in the document which is
not possible to measure using readability methods because of
their reliance in determining difficulty of terms using surface
level features.
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C. Technical Term Difficulty

Every term in a domain-specific document is character-
ized by certain difficulty in a domain. Some terms such
as technical terms of a domain are shared less among
documents as they are not commonly used; compared to the
common terms such as “because”, “composed” etc, which
are common/general terms used in everyday language. The
notion of technical term difficulty is similar to the notion
of document scope in [5] where difficulty of a concept is
measured based on the depth of a concept in the ontology
tree. In contrast, we measure scope of a domain-specific term
without an ontology.
We formulate the notion of computing a term’s difficulty

as a term embedding problem which embeds a term vector
by a weighted linear combination of document vectors in
the latent space. The low-dimensional representation of term
and document vectors obtained via SVD is not normalized.
Normalization ensures numerical stability of our model and
closeness is completely measured by angles between the
vectors and the effect of diverse magnitude is discarded.
Recall the SVD factorization as described in Equation 1.

Suppose that U and S are matrices in SVD computation as
expressed in Equation 1. Let R be a matrix with dimension
T × f and R is computed by matrix multiplication of U

and S as depicted in Equation 2.

R = U × S (2)

Let �rx denote the term vector at row x in matrix R. The
dimension of �rx is 1× f . Equivalently, R can be expressed
as in Equation 3.

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

�r1

�r2

· · ·
�rx

· · ·
�rT

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

We normalize �rx as follows:

�̂rx =
�rx

||�rx||
(4)

Let L be a matrix of dimension f ×D and L is computed
by a matrix multiplication of S and V

T as depicted in
Equation 5

L = S × V
T (5)

Let �lj denote a document vector at column j in L. The
dimension of �lj is 1 × f . Equivalently, L can be expressed
as depicted in Equation 6.

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�l1
�l2
· · ·
�lj
· · ·
�lD

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T

(6)

We normalize each document vector �lj as depicted in
Equation 7.

�̂
lj =

�lj

||�lj ||
(7)

In our approach, for each term in the vocabulary we
attempt to compute a scale factor associated with each
document in which the term exists. Consider a term x from
the vocabulary. Let the index set of documents that contain
term x be denoted as {q1, q2, · · · , qNx

} where Nx is the
total number of the documents that contain the term x.
We construct a matrix L̂x. Each row in L̂x corresponds to

document vector �̂
lqi

. The dimension of L̂x is Nx × f . As a
result, L̂x can be expressed as depicted in Equation 8

L̂x =

⎡
⎢⎢⎣

�lq1

�lq2

· · ·
�lqNx

⎤
⎥⎥⎦ (8)

The term linear embedding problem can be formulated as
minimizing the distance expressed in Equation 9.

minimize
[γx

n]
||�̂rx − [γx

n]T L̂x||

subject to
Nx∑
n=1

γx
n = 1, γx

n ≥ 0
(9)

The weights encapsulated in [γx
n] by linear synthesis in

Equation 9 can be regarded as technical contribution that the
term plays in the document. The dimension of [γx

n] is Nx×1.
By adopting the optimization in Equation 9, we are finding
a scale factor [γx

n] associated with document n for term x

such that the scaled vector [γx
n]T L̂x is as close as possible

to the term vector �̂rx. The linear combination coefficients
of each document synthesized with the term are in [γx

n].
The coefficient will obtain a higher value, if the document
vector is close to the term vector in the latent space. The
coefficients will be low when the document is far from the
term. Therefore, domain-specific terms will come close to
the document vector in the latent space. The closer they are,
the rarer they are in the document collection and therefore
an average reader will find the term difficult to comprehend.
We conduct optimization expressed in Equation 9 for each

term in the vocabulary. Consider document j from the entire
collection. Let Cj be the total number of terms in document
j. Every term ti in j will have a conceptual difficulty value
denoted as γti

j . Then the difficulty score, χj of the document
j can be formulated as:

χj =

∑Cj

i=1 γti

j

Cj

(10)
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D. Sequential Segment Cohesion

As [13] pointed out that document displays varying degree
of cohesion. The beginning of text will not be cohesive
with the later sections of the same text. The main hurdle
in technical comprehensibility comes when a reader has to
relate different technical storylines occurring in sequence
both of which deal with different thematic interpretations in
the same document. Here a segment is referred to multiple
terms in sequence which belong to the same cluster in the
LSI latent space. This notion is different from text seg-
mentation approaches where the prime focus is to measure
change in the thematic ideas or topics in text [27]. Our
approach mainly considers change in the concept cluster
membership in latent concept space and the segment lengths
may be smaller in length compared with traditional text
segmentation approaches.

Algorithm 1: Cohesion based on segmentation.
Input: Collection of text documents, cluster

information of terms.
Output: Cohesion score of a document.

1 ζj ← 0;
2 Sj ← 1;
3 ti ← READ a unigram from document;
4 πi ← GetClusterMembership(ti);
5 Δi ← GetClusterCentroid(πi);
6 while not at the end of this document do
7 ti+1 ← READ a unigram from document;
8 πi+1 ← GetClusterMembership(ti+1);
9 Δi+1 ← GetClusterCentroid(πi+1);
10 if (πi �= πi+1) then
11 α ← ν(Δi,Δi+1);
12 ζj ← ζj + α;
13 Δi ← Δi+1;
14 Sj=Sj + 1;
15 πi = πi+1;
16 else
17 Go back to the beginning of the loop;
18 end
19 end
20 return

( ζj

Sj
× τ

)
;

Generally the latent space obtained via SVD does not
directly provide a reasonable cluster membership of every
term in space [28]. A clustering algorithm is needed. In
[26], k-means is applied followed by bottom up clustering
to determine the cluster membership of terms in the latent
space. We adopt similar clustering technique because k-
means is well suited for handling large datasets as ours [29].
We cluster low-dimensional term vectors in the latent space.
The input to the clustering algorithm are the normalized low-
dimensional term vectors �̂rx as depicted in Equation 4.

A segment is a sequence of terms in the document which
belong to the same conceptual cluster in the latent space. We
show one such example in Figure 1, where Qs represents a
segment. Our model for finding cohesion is to traverse the
sequence of terms in order in the latent concept space. We
call this process “conceptual transitions” in latent space. We
keep moving forward in sequence until a change in cluster
membership of a term occurs. Let ν( �Δs, �Δs+1), denote co-
sine similarity between the centroids of two clusters to which
the segments belong, where �Δs represents the centroid of the
cluster in which a segment Qs exists, and �Δs+1 represents
the centroid of the cluster of the next segment. Let Sj be
the total number of segments in document j and τ be the
average number of terms of all segments in the document.
Let ζj denote the overall cohesion score of document j. The
cohesion score of document j is formulated as:

ζj =

∑Sj−1
s=1 ν( �Δs, �Δs+1)

Sj

τ (11)

If the document is cohesive, then majority of the terms in
document will belong to a single segment and τ will have
a high value. If terms are not semantically associated with
each other in the discourse, number of segments Sj will be
high in the document. As a result, overall cohesion will be
lowered indicating that document is conceptually difficult.
Hence, at each forward traversal in the document, a reader
will experience certain amount of conceptual leaps.
We show the steps for computing cohesion as a pseu-

docode in Algorithm 1. We traverse the sequence of terms
in a text document and at each forward movement, ascertain
the cluster membership of term ti in sequence (procedure
GetClusterMembership()). If the sequences of terms come
from the same cluster, this indicates that terms in sequence
are cohesive. We keep on traversing forward until a change
in the term’s cluster membership occurs which indicates
weakness in cohesion among terms in sequence. We keep
track of the number of segments in Sj . We measure segment
cohesion by computing the cosine similarity (procedure
CosineSimilarity()) between the two centroids (procedure
GetClusterCentroid()) of the clusters to which the two
segments belong. In the end, this will result in the document
being segmented into several different segments each of
which incorporates one cohesive group of terms and cohe-
sion score of the document is aggregated.

IV. DOCUMENT CONCEPTUAL DIFFICULTY
SCORE

Our approach determines the relative “conceptual dif-
ficulty” of a document when hopping/traversing through
text sequentially, where difficulty of documents is measured
in the latent space that represent a deviation from the
common terms and cohesion between the segments. The
overall conceptual difficulty of a document will be directly
proportional to individual difficulties of each term in the
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t1 t2 t3 t4 t6t5 t7 t8 t9 t10

Qs Qs+1

Figure 1. One particular term sequence (t1, t2, · · · , t10) with two segments (Qs, Qs+1) in sequence.

Annotation Guidelines
The relative technical difficulty of the document that you are
currently reading is:
4 Very low
3 Reasonably low
2 Borderline
1 Reasonably high
0 Very high

Table I
CONCEPTUAL DIFFICULTY JUDGMENT GUIDELINES GIVEN TO THE

HUMAN JUDGES.

document and inversely proportional to cohesion score. The
more the cohesion among the units of text, the lesser will
be the conceptual difficulty in comprehending a technical
discourse [30]. Therefore, conceptual difficulty, Φj of a
document can be formulated as:

Φj = βχj + (1 − β)
1

ζj + 1
(12)

where β (0 ≤ β ≤ 1) is the parameter controlling the relative
contribution between term difficulty and cohesion. We have
added 1 in the denominator of cohesion score to handle
the case when the centroids are orthogonal to each other.
Φj gives an indication about the conceptual difficulty of
document j. This score will be used to re-rank the search
results obtained from a similarity based IR system.

V. EXPERIMENTS AND RESULTS

A. Data Preparation

Existing standard IR test collections such as those used in
TREC and CLEF cannot fulfill our purpose of evaluation as
we need conceptual difficulty judgment on each document.
Hence we collected a large test collection of web pages
of our own as done by the topical search engines. To
ascertain the full operational characteristics of our model,
we chose Psychology domain. We crawled a large number of
web pages from various resources. Enlisting every crawled
source would be too long but we name a few popular
sites from where we crawled web pages: 1) Wikipedia, 2)
Psychology.com, 3) Simple English Wikipedia, and some
more related web sites. We crawled 167,400 web pages with
154,512 unique terms in the vocabulary. No term stemming
was performed. We prepared two sets of documents, one
with stopwords1 kept and another with stopwords removed.
Removing stopwords breaks the natural semantic structure of

1http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-
stoplist/english.stop

the document, but this will capture conceptual leaps between
the sequences of content words.
To collect queries that an average user is likely to use

for searching information about a domain, we followed the
INEX2 topic development guidelines. However, our topic
creators were not domain experts. In all, we had 110 topics.
Some sample information needs are: 1) depression, 2) fear
of flying 3) intimacy.

B. Experimental Setup

We refer our model with stopwords kept as STTM(Stop)
and with stopwords removed as STTM(No Stop). One of our
aims was to test the role of stopwords in determining the
conceptual difficulty of documents. We compared with other
state-of-the-art approaches in terms of conceptual difficulty
prediction and ranking. We used Zettair3 to conduct retrieval
and obtained a ranked list using Okapi BM25 [31] ranking
function. We then selected top ten documents for evaluation
purpose. The reason for selecting these documents for eval-
uation is that we observed that these documents from Zettair
system were all relevant to the query and the list contained
a mix of documents with different conceptual difficulty.
These documents were then re-ranked automatically from
conceptually simple to difficult using our proposed models
as well as some existing models for comparison. Similar
kind of experimental setup and document re-ranking scheme
have been adopted in [5] and [32]. The reason for re-ranking
from conceptually simple to advanced in our experiments is
as follows. According to the studies undertaken relating to
the behavior of novices and expert searchers, it has been
found that an increasing number of users are searching
for information in unfamiliar domains [1]. Hence, most of
them will probably look for introductory level documents. A
study has also found that domain experts employ complex
search strategies such as usage of jargon, complex phrases
to successfully retrieve documents matching their expertise
level [33]. Therefore, ranking from conceptually simple to
advanced fits most of the users. As stated previously in [5]
and [32], the authors also ranked documents from intro-
ductory to advanced when they tested their model on users
possessing average level of knowledge about healthcare. In
[34], the authors re-ranked documents based on decreasing
specificity.
We have set the value of β = 0.5 in our experiments

which means that equal weights are given to both compo-

2http://www.inex.otago.ac.nz/tracks/adhoc/gtd.asp
3http://www.seg.rmit.edu.au/zettair/index.html
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Method NDCG@3 NDCG@5 NDCG@7 NDCG@10
Okapi BM25 0.429 0.462 0.500 0.526

LM 0.433 0.465 0.502 0.529
Cosine 0.542 0.581 0.599 0.654

STTM(Stop) 0.579 0.600 0.640 0.670
STTM(No Stop) 0.576 0.599 0.641 0.669

Table II
RANKING PERFORMANCE OF POPULAR RANKING MODELS AT

DIFFERENT RETRIEVAL POINTS. STTM HAS OBTAINED A

STATISTICALLY SIGNIFICANT RESULT ACCORDING TO PAIRED T-TEST
(p < 0.05) AGAINST ALL MODELS. STTM(STOP) IS OUR MODEL WITH

STOPWORDS KEPT AND STTM(NO STOP) IS OUR MODEL WITH

STOPWORDS REMOVED. WE HAVE SET β = 0.5 DEFINED IN

EQUATION 12 SO THAT EQUAL WEIGHTS COME FROM BOTH

COMPONENTS OF OUR MODEL.

Method NDCG@3 NDCG@5 NDCG@7 NDCG@10
ARI 0.515 0.548 0.582 0.618
C-L 0.525 0.553 0.584 0.612

Flesch 0.449 0.490 0.537 0.579
Fog 0.513 0.547 0.577 0.612
LIX 0.516 0.550 0.584 0.619

SMOG 0.517 0.550 0.579 0.616
CHM 0.465 0.456 0.473 0.482

STTM(Stop) 0.579 0.600 0.640 0.670
STTM(No Stop) 0.576 0.599 0.641 0.669

Table III
RANKING PERFORMANCE OF OUR MODELS AGAINST POPULAR

READABILITY MODELS AT DIFFERENT RETRIEVAL POINTS. STTM HAS

OBTAINED A STATISTICALLY SIGNIFICANT RESULT ACCORDING TO

PAIRED T-TEST (p < 0.05) AGAINST ALL MODELS.

nents. The value of k in k-means was 150. We have set
f = 200 (defined in Section III-B) because in general low
number of factors are ideal for effective results [35]. We
used SeDuMi with YALMIP [36] to conduct optimization
in Equation 9. Our main model is STTM(Stop) because
our objective is to test our model on the entire document
structure without removing any of the features.
The existing unsupervised methods used as comparative

methods include: 1) Okapi BM25 described in [31], 2)
Dirichlet smoothed, query likelihood language model [37]
(denoted as LM) with default parameter as in Zettair), and
3) Cosine similarity based retrieval [25]. In addition, we
also compared with widely used unsupervised readability
scores, namely, 1) ARI: Automated Readability Index, 2)
Coleman-Liau (denoted as C-L in the tables), 3) Flesch
Reading Ease formula, 4) Fog, 5) LIX, and 6) SMOG.
More details about readability methods can be found in [10].
For each readability formula it computes a readability score
for every document. Then the documents are re-ranked in
descending order of the readability score. We also compare
our model against one of our previously proposed methods
CHM described in [7]. Our model works by considering only
the semantic content of text. Readability methods contain
both semantic and syntactic components. Therefore, we only
chose the semantic component of readability methods.
It is important to note that readability methods and tradi-

tional ranking methods form the most suitable comparative

methods because they are completely unsupervised. Domain-
specific readability methods such as [5] and [6] use an extra
lexicon of technical terms.

C. Evaluation Metric

To obtain a ground truth of conceptual difficulty of
documents for evaluation purpose, two human annotators
who were undergraduate students having varied background
were invited. They had basic knowledge about Psychology.
The annotators were fluent in reading English passages.
They gave annotations following guidelines given in Table I.
They were also asked to read the articles sequentially
without skipping any term in the document. In the beginning
we acquainted them with the main aim of the study and
also showed them some sample documents from our test
collection so that they could get an idea about the relative
difficulty levels of documents in the collection. The standard
deviation of judgments among the annotators was 1.23.
We evaluate our method using NDCG and we use same

formula as in [38]. NDCG is widely used for IR ranking
effectiveness measurement. NDCG is well suited for our
task because it is defined by an explicit position discount
factor and it can leverage the judgments in terms of multiple
ordered categories. NDCG@i scores will directly correlate
with the difficulty annotation of documents given by hu-
mans. Such scores can measure the quality of difficulty
ranking of documents based on the difficulty judgments
provided by humans with levels shown in Table I. If NDCG
is high, it means that the ranking function correlates better
with the human judgments.

VI. RESULTS DISCUSSION

We present the main result in Tables II and III. Our model
has significantly outperformed (using paired t-test p < 0.05)
traditional ranking functions in Table II and it matches our
general intuition that the traditional ranking functions are
not suitable for handling ranking of documents based on
conceptual difficulty. One notable observation is the role of
stopwords in our results. One can notice that STTM(Stop)
has relatively performed better than STTM(No Stop) in our
experiments. Importance of stopwords has also been studied
in [16] where the authors found out that stopwords have
played an important role in their FAMCLASS classifier.
In Table III we compare our model against widely used

readability formulae. Our model has also performed sig-
nificantly better than any other comparative method (using
paired t-test (p < 0.05)). This points to the fact that
readability formulae fail to differentiate terms based on
contextual usage and their difficulties. In Table IV, we
present query-wise performance of our model compared with
the comparative methods. It can be seen that in most of the
cases our model outperforms the comparative methods by a
high margin. CHM did not perform very well due to a weak
non-linear model.
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Method Name Queries Improved Average Improvement
STTM(Stop) STTM(No Stop) STTM(Stop) STTM(No Stop)

Okapi BM25 60 56 34.56% 30.45%
LM 59 53 32.71% 27.66%

Cosine 43 38 19.93% 14.91%
ARI 48 39 12.34% 10.12%
C-L 56 48 16.23% 12.43%
Flesch 58 40 15.65% 11.33%
Fog 58 50 16.44% 8.34%
LIX 51 43 13.98% 7.55%

SMOG 40 38 13% 9.46%
CHM 71 68 33% 23.54%

Table IV
QUERY-WISE PERFORMANCE OF OUR MODEL COMPARED WITH THE COMPARATIVE MODELS.

We experimented STTM by varying 0 ≤ β ≤ 1 in
Equation 12. We show results in Figure 2. We have obtained
statistically significant results using paired t-test (p < 0.05)
across all values for β against all methods. What can be
observed from the two ends of the abscissa in Figure 2 is that
a β close to 0 attains greater NDCG@10. The contribution
from difficulty is more uniform across all documents than
from cohesion. In other words, the usage of the terminolo-
gies is at the same level.
Through our study we have found that traditional ranking

functions are not designed to handle ranking by difficulty of
documents. We have also found that the readability formulae
are not directly applicable to the problem of determining
the conceptual difficulty of documents. What makes our
model superior when compared with other models is that
we are able to effectively capture term difficulties of the
domain-specific terms based on their contextual information.
It means that in one technical discourse, if a term is used
as a general term, its difficulty will be low. However the
same term whose semantic fabric coherently matches with
the technical storyline of the document will have a high con-
ceptual difficulty score. Our model also captures conceptual
leaps during sequential term traversal in the document.

VII. CONCLUSIONS AND FUTURE WORK

We have presented our model STTM that re-ranks text
documents based on conceptual difficulty. Our major in-
novation lies in the way we have adopted a conceptual
model to solve the problem. Traditional readability formulae
cannot capture domain-specific jargon, for example, “star”,
“shock” etc. By maintaining term order in the document, our
model captures inter-segment cohesion among neighboring
terms. We have also shown that stopwords play some role
in determining reading difficulty of text documents. This
finding is consistent with some prior works on document
readability.
In future we will study the hyperlinked structure of the

web and its role in determining conceptual difficulty of
documents. The notion is that many simple web documents
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Figure 2. The effect of varying 0 ≤ β ≤ 1 defined in Equation 12. We
obtained statistically significant results according to paired t-test (p < 0.01)
against all comparative methods.

tend to link with other simpler documents and vice versa
[39].
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