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One line summary of the thesis
Shows how maintaining the document structure such as
paragraphs, sentences, and the word order helps improve the
performance of topic models.
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What do you do when you have these many pages?

The Indexed Web contains at least 4.96 billion
pages (as of Wednesday, 11 June, 2014). – World-
WideWebSize.com

Did you know?

♣

The Indexed Web contains at least 4.96 billion
pages (as of Wednesday, 11 June, 2014). – World-
WideWebSize.com

Did you know?

♣
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Take each one of them and read?

Sed feugiat. Cum sociis natoque penatibus et magnis dis parturient montes,
nascetur ridiculus mus. Ut pellentesque augue sed urna. Vestibulum diam
eros, fringilla et, consectetuer eu, nonummy id, sapien. Nullam at lectus.
In sagittis ultrices mauris. Curabitur malesuada erat sit amet massa. Fusce
blandit. Aliquam erat volutpat. Aliquam euismod. Aenean vel lectus. Nunc
imperdiet justo nec dolor.

Nulla in ipsum. Praesent eros nulla, congue vitae, euismod ut, commodo
a, wisi. Pellentesque habitant morbi tristique senectus et netus et male-
suada fames ac turpis egestas. Aenean nonummy magna non leo. Sed felis
erat, ullamcorper in, dictum non, ultricies ut, lectus. Proin vel arcu a odio
lobortis euismod. Vestibulum ante ipsum primis in faucibus orci luctus et
ultrices posuere cubilia Curae; Proin ut est. Aliquam odio. Pellentesque
massa turpis, cursus eu, euismod nec, tempor congue, nulla. Duis viverra
gravida mauris. Cras tincidunt. Curabitur eros ligula, varius ut, pulvinar
in, cursus faucibus, augue.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a
faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl.
Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis
lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in
sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu
lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo
lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula
sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla
egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus
vel est. Curabitur consectetuer.

Remember!!
4.96 billion documents
on the web.

Problem!!!
Even reading a small
subset of such a huge
collection is impossible
for a human.
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Or get gist of the data using statistical techniques

Document Collection

3

1

0

V1

V2

Vn

VW

Term-Document Matrix Topic Model

Topic 1

Topic 2

Topic 3

Topic 4
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Word Overlaps
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What is so great about statistical techniques?

Term document matrix - High dimensional vector space.

d1 d2 · · dD


v1 8 1 1 1 4
v2 5 12 0 0 1
· 1 0 1 0 1
· 0 0 0 1 1
· 0 0 0 0 1

vW 0 0 0 0 1

Notations
W - Number of words in the vocabulary.
D - Number of documents in the collection.
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Term document matrix, A, using Singular Value Decomposition
is decomposed as:

A︸︷︷︸
W×D

= U︸︷︷︸
W×W

× S︸︷︷︸
W×D

× VT︸︷︷︸
D×D

=




· · · · · ·
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Topic Model as Matrix Factorization

Terms



Topics︷ ︸︸ ︷
k1 k2 k3


v1 1.00 0.91 1.00
v2 0.44 0.57 0.84
· · · ·
· · · ·
· · · ·

vW 0.00 0.00 0.47

≈ P(w|z)

Topics


Documents︷ ︸︸ ︷
d1 d2 · · dD( )k1 0.19 0.05 · · 0.10

k2 0.01 0.43 · · 0.52
k3 0.03 0.45 · · 0.64

≈ P(d|z)
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This is how it works

Topic 1

architecture 0.05

recurrent 0.01

network 0.01

module 0.008

modules 0.0004

Probability

Topic 2

order 0.09

second 0.01

analysis 0.008

small 0.006

Generated Word

first 0.02
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Applications of Topic Models

Topic Models

Twitter Medical

ImagesText

Social Networks - Finding
popular nodes in a graph.
Gene expression analysis -
Highlight the relationship
between cell types, cellular
processes, and gene
expression.
Image analysis - Image
annotation.
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But!!!!

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

architecture order connectionist potential prior
recurrent first role membrane bayesian
network second binding current data
module analysis structures synaptic evidence
modules small distributed dendritic experts

So what is the problem above?
Words in topics are not insightful.
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Latent Dirichlet Allocation Model (LDA) [?]
Generative Process

1 Draw θ(d) from
Dirichlet(α), where each
θ(d) consists of topic
distribution for document d

2 Draw φ from Dirichlet(β),
where φ encompasses
word distribution for topic

3 For every word in the
document d

1 Draw a topic z(d)
i from

Multinomial (θ(d))
2 Draw a word w (d)

i from
Multinomial (φz(d)

i
)

Graphical Model

N

w

z

M
Z

θ α

φ

β
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Plate Diagrams

zd
i−1

wd
i−1

θdα

D

K

φ

zd
i zd

i+1

wd
i wd

i+1

β
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Topic Model as Matrix Factorization
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What does a topic model do? - Generation Process

z=1 z=2 z=3 z=4

d=1 d=2 d=3

hidden
training

unit

net
layer

output

inputs
units

network

weights

time

call rate

game

traffic

strategy
performance

move

play neurons

neuron activity

connectionsphase

network
inhibitoryexcitatory

fig performance

results task

human
study

values
test data

experiments
subjects

training

network
neuron

activity
hidden

net

phase

game

datatime

performance

study

neurons

phase

network

connections
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What does a topic model do? - Inference Process

z=1 z=2 z=3 z=4

d=1 d=2 d=3

training

network
neuron

activity
hidden

net

phase

game

datatime

performance

study

neurons

phase

network

connections
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Bag of Words in Topic Segmentation
These models maintain document structure such as
paragraphs or sentences.
Assume that words within a segment (paragraph or a
sentence) are exchangeable.
Introduces the notion of super-topics and word-topics

Paragraph n in the document d

Paragraph n + 1 in the document d

this
is

paragraph

1

2

will

follow

next

follow

paragraph

3is

will
next

this

2
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A Topic Segmentation Model (LDSEG) [?]
Model Properties

Performs topic
segmentation
Can work at paragraph
and sentence level
c a binary variable gives
the change in topics
segment-wise
Segments come from a
predefined number of
super-topics
The super-topics comprise
of a mixture of word-topics

Graphical Model

N

w

z

S

Z

θ α

φ

β

M

y

τ ρ

c

π

Ω
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A Topic Segmentation Model (LDSEG)
Model Properties

This region is similar to the
LDA model
Segments exhibit multiple
topics
Words are generated from
a predefined number of
word-topics

Graphical Model

N

w

z

S

Z

θ α

φ

β

M

y

τ ρ

c

π

Ω
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Topic Segmentation Illustration - LDSEG
Abstract We give necessary and sufficient conditions for uniqueness of the support vector solution for the problems of
pattern recognition and regression estimation, for a general class of cost functions. We sho that if the solution is not
unique, all support vectors are necessarily at bound, and we give some simple examples of non-unique solutions. We
note that uniqueness of the primal (dual) silution does not necessarily imply uniqueness of the dual (primal) solution.
We show how to compute the threshold b when the solution is unique, but when all support vectors are bound, in which ...

case the usual method for determining b does not work...
Acknowledgements C. Burges wishes to thank W. Keasler, V. Lawrence and C. Nohl of Lucent Technologies for their

support. Reference [1] R. Fletcher, Practical Methods of Optimization. John Wiley and Sons, Inc., 2nd edition, 1987.

P
ara.

1
P

ara.
2

Word-Topic 1 Word-Topic 2

acknowledgements

reference

support

vector

cost

Super-Topic 1

Super-Topic 4

Super-Topic 7

Word-Topic 1

Word-Topic 9

Word-Topic 12

Super-Topic 2

Word-Topic 5

Word-Topic 8

Word-Topic 1

Performs topic segmentation
Unigram words are assigned to the word-topics
Segments are assigned to the document-topics or
super-topics
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Why capture topics over time?

1 We know that data evolves over time.
2 What people are talking today may not be talking tomorrow

or an year after.

Burj Khalifa

Volcano
Manila Hostage

Iraq War

Year-2010

Wikipedia

N.Z Earthquake

Osama bin Laden
Higgs Boson

Year-2011 Year-2012

Gaza Strip

Sachin Tendulkar

China

Apple Inc.

3 Models such as LDA cannot capture such temporal
characteristics in data.
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Topics Over Time (TOT) [?]
Generative Process

1 Draw T multinomials φz
from a Dirichlet Prior β,
one for each topic z

2 For each document d ,
draw a multinomial θ(d)

from a Dirichlet prior α;
then for each word w (d)

i in
the document d

1 Draw a topic zd
i from

Multinomial θ(d)

2 Draw a word w (d)
i from

Multinomial φz(d)
i

3 Draw a timestamp t (d)
i

from Beta Ωz(d)
i

Topics Over Time Model (TOT)

I

w t

z

θ

α

Ωφ

β

D
Nd

T

Fig. 1. TOT model
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Latent Dirichlet Allocation Model (LDA) [?]
Generative Process

1 Draw θ(d) from
Dirichlet(α), where each
θ(d) consists of topic
distribution for document d

2 Draw φ from Dirichlet(β),
where φ encompasses
word distribution for topic

3 For every word in the
document d

1 Draw a topic z(d)
i from

Multinomial (θ(d))
2 Draw a word w (d)

i from
Multinomial (φz(d)

i
)

Graphical Model

N

w

z

M
Z

θ α

φ

β
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Topics Over Time Model (TOT)

1 The model assumes a continuous distribution over time
associated with each topic.

2 Topics are responsible for generating both observed
time-stamps and also words.

3 The model does not capture the sequence of state
changes with a Markov assumption.

A B

D

M
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Relaxing the Bag-of-Words Assumption in a Topic Model

Can the bag-of-words assumption be relaxed in a topic model?
This makes more sense as this is how documents are written
by humans and also read.

Fermat’s Last Theo-
rem states that

xn + yn = zn

has no non-zero inte-
ger solutions for x , y
and z when n > 2.

Word Order

last, states, has,
when, integer, non,
zero, solutions, x, n,
2, z, fermat, that,=,+

Bag-of-Words
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Something “NOT” very useful!

w1 w2 w3 w4 w5

Figure: Illustration of Word Order

1
0.3

2
0.01

3
0.04

4
0.6

Figure: Illustration of n-gram generation using topic modeling
approach

A sentence can be a segment.

Figure: Illustration of a segment
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Relaxing the Bag-of-Words Assumption
Bigram Topic Model (BTM) [?]

Some Properties of the model
Word is generated by both
the topic and the previous
word
Inspired by the Hierarchical
Dirichlet Language Model
Better empirical results
than the LDA model
A limitation of the model

Always generates
bigrams in a topic

Graphical Model of BTM

w
(d)
i−1

z
(d)
i−1

M

θ

w
(d)
i w

(d)
i+1

w
(d)
i+2

z
(d)
i z

(d)
i+1 z

(d)
i+2

α

σ

ZV

δ
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Relaxing the Bag-of-Words Assumption
LDA-Collocation Model (LDACOL) [?]

Some Properties of the model
Word is generated by the
topic, previous word and a
binary bigram status
variable
Each word has a topic
assignment and a
collocation assignment
Can generate both
unigrams and bigrams
A limitation of the model

Only the first word in a
bigram has a topic
assignment

Graphical Model of LDACOL

M

VZ

V

α

θ

z
(d)
i−1 z

(d)
i z

(d)
i+1 z

(d)
i+2
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i x
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i+1 x

(d)
i+2

w
(d)
i−1 w

(d)
i w
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i+1 w
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γ
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Relaxing the Bag-of-Words Assumption
Topical N-Gram Model (TNG) [?]

Some Properties of the model
Extends LDACOL
Each word has a topic
assignment and a
collocation assignment
Can form longer order
phrases
Can generate both
unigrams and bigrams
A limitation of the model

Words in a bigram may
have different topic
assignments

Graphical Model of TNG

M

ZVZ

ZV

α

θ

z
(d)
i−1 z

(d)
i z

(d)
i+1 z

(d)
i+2

x
(d)
i x

(d)
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What Topic N-gram models do - An Illustration

Abstract We give necessary and sufficient conditions for uniqueness of the support vector solution for the problems of
pattern recognition and regression estimation, for a general class of cost functions. We sho that if the solution is not
unique, all support vectors are necessarily at bound, and we give some simple examples of non-unique solutions. We
note that uniqueness of the primal (dual) silution does not necessarily imply uniqueness of the dual (primal) solution.
We show how to compute the threshold b when the solution is unique, but when all support vectors are bound, in which ...

case the usual method for determining b does not work...
Acknowledgements C. Burges wishes to thank W. Keasler, V. Lawrence and C. Nohl of Lucent Technologies for their

support. Reference [1] R. Fletcher, Practical Methods of Optimization. John Wiley and Sons, Inc., 2nd edition, 1987.
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Topic 1 Topic 2
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cost functions

acknowledgements

reference

Consider the document as a whole
Find topical n-grams in the document
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Main Contributions in this Thesis

A model that maintains the document structure such as
paragraphs and sentences (SIGIR-2013 [?]).
Detection and coordination two topic granularity levels

Segment-Topics
Word-Topics

Temporal dynamics in text data with n-grams (ECIR-2013
[?]).
Proposed new models with word order to solve different
tasks, for example, readability problem in IR
(COLING-2012 [?], CIKM-2011 [?], WI-2012 [?],
SKG-2012 [?], JCDL-2012 [?]), Bayesian nonparametrics
(AIRS-2013 [?]).
Derivation of the posterior inference schemes.
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Our Proposed Model (NTSeg)
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Our Proposed Model (NTSeg)
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Few Properties of NTSeg

Segments are assigned to the segment-topics.

Assumes a Markov property on the segment-topics y (d)
s .

c(d)
s denotes the segment-topic change-points.

Segments can be taken as a paragraphs or sentences.

Shoaib Jameel Structured Topic Models for Text Data 35/89



Motivation
Literature Survey

Thesis Contributions

N-gram Topic Segmentation Model
N-gram Topics Over Time Model
Supervised Topic Models

Our Proposed Model (NTSeg)
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Some properties of NTSeg

Does not break the order of the words
Can form unigrams, bigrams and higher order phrases
(using x) variable
The phrases share the same topic
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Figure: This is how we form longer phrases
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Posterior Inference
Gibbs Sampling

Sampling word-topic assignments

P(z(d)
si , x

(d)
si |w, z(d)

¬si , x
(d)
¬si ,y,c, α, β, γ, δ, ρ,Ω) ∝

( α
y (d)

s z(d)
si

+ h(d)

sz(d)
si

− 1︸ ︷︷ ︸
Document topic proportions

)× (γ
x (d)

si
+ p

z(d)
s,i−1w (d)

s,i−1x (d)
si
− 1︸ ︷︷ ︸

Bigram status variable

)

×



β
w (d)

si
+ n

z(d)
si w (d)

si
− 1∑V

v=1
(
βv + n

z(d)
si v

)− 1︸ ︷︷ ︸
Prob. of a unigram in a topic

if x (d)
si = 0

δ
w (d)
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+ m

w (d)
si w (d)

s,i−1z(d)
si
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(
δv + m

w (d)
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)− 1︸ ︷︷ ︸
Bigram probability

if x (d)
si = 1 & z(d)

si = z(d)
s,i−1︸ ︷︷ ︸

Share same topic
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Posterior Inference
Gibbs Sampling

Sampling segment-topic assignments

P(y (d)
s , c(d)

s |z, y (d)
¬s , c

(d)
¬s ,w,x, α, β, γ, δ, ρ,Ω) ∝

( ρ
y (d)
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y (d)
s
− 1)︸ ︷︷ ︸

Segment-topic mixtures

×( α
y (d)

s z(d)
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− 1︸ ︷︷ ︸
Word and Segment topic mixtures

)×

( κ
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x=0 κ
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Segment changepoints status update

)
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(
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+Ω1P1
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s = 1 & s > 1 & y (d)
s = y (d)

(s−1)
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NTSeg Word-Topic and Segment-Topic
Illustration

Abstract We give necessary and sufficient conditions for uniqueness of the support vector solution for the problems of
pattern recognition and regression estimation, for a general class of cost functions. We sho that if the solution is not
unique, all support vectors are necessarily at bound, and we give some simple examples of non-unique solutions. We
note that uniqueness of the primal (dual) silution does not necessarily imply uniqueness of the dual (primal) solution.
We show how to compute the threshold b when the solution is unique, but when all support vectors are bound, in which ...

case the usual method for determining b does not work...
Acknowledgements C. Burges wishes to thank W. Keasler, V. Lawrence and C. Nohl of Lucent Technologies for their

support. Reference [1] R. Fletcher, Practical Methods of Optimization. John Wiley and Sons, Inc., 2nd edition, 1987.

P
ara.

1
P

ara.
2

Word-Topic 1 Word-Topic 2

acknowledgements

reference

support vector

cost

Segment-Topic 1

Segment Topic 4

Segment Topic 7

Word-Topic 1

Word-Topic 9

Word-Topic 12

Segment-Topic 2

Word-Topic 5

Word-Topic 8

Word-Topic 1
functions

Performs document segmentation based on topic
N-gram words are assigned to the word-topics
Segments are assigned to the segment-topics
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Topic Segmentation Illustration - LDSEG
Abstract We give necessary and sufficient conditions for uniqueness of the support vector solution for the problems of
pattern recognition and regression estimation, for a general class of cost functions. We sho that if the solution is not
unique, all support vectors are necessarily at bound, and we give some simple examples of non-unique solutions. We
note that uniqueness of the primal (dual) silution does not necessarily imply uniqueness of the dual (primal) solution.
We show how to compute the threshold b when the solution is unique, but when all support vectors are bound, in which ...

case the usual method for determining b does not work...
Acknowledgements C. Burges wishes to thank W. Keasler, V. Lawrence and C. Nohl of Lucent Technologies for their

support. Reference [1] R. Fletcher, Practical Methods of Optimization. John Wiley and Sons, Inc., 2nd edition, 1987.
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Performs topic segmentation
Unigram words are assigned to the word-topics
Segments are assigned to the document-topics or
super-topics
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Word-topic and Segment-topic Correlation
Graph

Used a large dataset - OHSUMED
OHSUMED consists of 348,566 medical abstracts

The idea is to show the discovery of n-gram words of
topics via the correlation graph

Shoaib Jameel Structured Topic Models for Text Data 43/89



Motivation
Literature Survey

Thesis Contributions

N-gram Topic Segmentation Model
N-gram Topics Over Time Model
Supervised Topic Models

Our Proposed Model (NTSeg)
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Word-Topic and Segment-Topic Correlation
Graph
Result of NTSeg
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Topic Correlation Graph
Correlation Graph from GD-LDA
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Topic Segmentation Experiment
Used two benchmark datasets - Books and Lectures

Books dataset - Medical text book, 140 sentences, 227
chapters
Lectures dataset - Undergraduate lecture recording of
Physics and AI classes, 90 min lecture, 700 sentences,
8500 words

Comparative method - TopicTiling Algorithm [?]
Used two commonly used evaluation metrics

Pk - Probability that the two segments drawn randomly
from a document are incorrectly identified as belonging to
the same topic
WinDiff - Moves a sliding window across the text and
counts the number of times the hypothesized and
referenced segment boundaries are different from within
the window

These two evaluation metrics give an error estimate, so
the lower, the better
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Latent Dirichlet Allocation Model (LDA) [?]
Generative Process

1 Draw θ(d) from
Dirichlet(α), where each
θ(d) consists of topic
distribution for document d

2 Draw φ from Dirichlet(β),
where φ encompasses
word distribution for topic

3 For every word in the
document d

1 Draw a topic z(d)
i from

Multinomial (θ(d))
2 Draw a word w (d)

i from
Multinomial (φz(d)

i
)

Graphical Model

N

w

z

M
Z

θ α

φ

β
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Our Proposed Model (NTSeg)
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Topic Segmentation
Results

Books dataset
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Topic Segmentation
Results

Lectures dataset
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Document Classification Experiment
Dataset

Generate four datasets from 20 Newsgroups data
The datasets are:

Computer
Politics
Sports
Science

Each dataset comprises of equal number of documents of
several classes. For example, the Computer dataset
consists of the following classes:

Graphics
Hardware
X Windows
Mac
Microsoft Windows
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Document Classification Experiment
Experimental Setup

Split each dataset into training and test set maintaining the
class distribution

We used 75% training and 25% testing in our experiments

For each class, we generate a topic model using the
training set
During classification, compute the likelihood of each
document in the test set in each topic model
The test document gets classified to that class where the
likelihood is maximum
Evaluation Metrics

Standard Precision, Recall and F-Measure for each class
Adopted Macro-Averaging scheme
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Precision, Recall and F-Measure

In document classification:

Precision for a class:
The number of true positives divided by the total number of
documents predicted to that class.

Recall is:
Recall is defined as the number of true positives divided by the
total number of elements that actually belong to that class in
the gold standard.

F-Measure is:
F-measure is the harmonic mean of precision and recall.
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Document Classification Experiment
Comparative Methods

Latent Dirichlet Segmentation Method (Word-Topics and
Super-Topics) - LDSEG ([?])
Pachinko Allocation Model (Super-Topics and
Word-Topics) - PAM ([?])
LDA Collocation Model (N-gram Topic Model) - LDACOL
([?])
Topical N-gram Model (N-gram Topic Model) - TNG ([?])
Phrase Discovery Topic Model based on Pitman-Yor
Process - PDLDA ([?])
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Document Classification Experiment
Results

Precision Recall F-Measure Precision Recall F-Measure
LDSEG 0.580 0.420 0.487 0.440 0.400 0.419
PAM 0.550 0.450 0.495 0.500 0.330 0.398

LDACOL 0.400 0.300 0.343 0.420 0.370 0.393
TNG 0.490 0.420 0.452 0.560 0.470 0.511
PDLDA 0.580 0.500 0.537 0.580 0.510 0.543
NTSeg 0.640 0.520 0.574 0.620 0.560 0.588

Computer dataset Science dataset
Precision Recall F-Measure Precision Recall F-Measure

LDSEG 0.390 0.320 0.352 0.330 0.320 0.325
PAM 0.540 0.490 0.514 0.368 0.360 0.363

LDACOL 0.550 0.410 0.470 0.200 0.180 0.189
TNG 0.550 0.450 0.495 0.340 0.290 0.313
PDLDA 0.590 0.410 0.484 0.380 0.210 0.271
NTSeg 0.620 0.570 0.594 0.420 0.380 0.399

Politics dataset Sports dataset
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Document Modeling Experiment

NIPS dataset
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Figure: NTSeg (??) LDSEG (??), PAM (??), LDACOL (??), TNG (??),
and PDLDA (??).

Shoaib Jameel Structured Topic Models for Text Data 57/89



Motivation
Literature Survey

Thesis Contributions

N-gram Topic Segmentation Model
N-gram Topics Over Time Model
Supervised Topic Models

Document Modeling Experiment
Results

OHSUMED dataset (348,566 medical abstracts)
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Figure: NTSeg (??) LDSEG (??), PAM (??), LDACOL (??), TNG (??),
and PDLDA (??).
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Our Model
N-gram Topics Over Time Model

1 The model assumes a continuous distribution over time
associated with each topic.

2 Topics are responsible for generating both observed
time-stamps and also words.

3 The model does not capture the sequence of state
changes with a Markov assumption.

4 Maintains the order of words during topic generation
process.

5 Generates words as unigrams, bigrams, etc. in topics.
6 Results in more interpretable topics.
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Graphical Model
N-gram Topics Over Time Model
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ti−1 ti ti+1xi xi+1
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Fig. 1. Our model
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Generative Process
N-gram Topics Over Time Model

Draw Discrete(φz) from Dirichlet(β) for each topic z;
Draw Bernoulli(ψzw ) from Beta(γ) for each topic z and each word w ;
Draw Discrete(σzw ) from Dirichlet(δ) for each topic z and each word
w ;
For every document d , draw Discrete(θ(d)) from Dirichlet(α);
foreach word w (d)

i in document d do
Draw x (d)

i from Bernoulli(ψz(d)
i−1w (d)

i−1
);

Draw z(d)
i from Discrete(θ(d));

Draw w (d)
i from Discrete(σz(d)

i w (d)
i−1

) if x (d)
i = 1;

Otherwise, Draw w (d)
i from Discrete(φz(d)

i
);

Draw a time-stamp t (d)
i from Beta(Ωz(d)

i
);

end
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Topics Over Time (TOT) [?]
Generative Process

1 Draw T multinomials φz
from a Dirichlet Prior β,
one for each topic z

2 For each document d ,
draw a multinomial θ(d)

from a Dirichlet prior α;
then for each word w (d)

i in
the document d

1 Draw a topic zd
i from

Multinomial θ(d)

2 Draw a word w (d)
i from

Multinomial φz(d)
i

3 Draw a timestamp t (d)
i

from Beta Ωz(d)
i

Topics Over Time Model (TOT)

I

w t

z

θ

α

Ωφ

β

D
Nd

T

Fig. 1. TOT model
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Posterior Inference
Collapsed Gibbs Sampling
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Empirical Evaluation
Data Sets

We have conducted experiments on two datasets
1 U.S. Presidential State-of-the-Union1 speeches from 1790

to 2002.
2 NIPS conference papers - The original raw NIPS dataset2

consists of 17 years of conference papers. But we
supplemented this dataset by including some new raw
NIPS documents3 and it has 19 years of papers in total.

Preprocessing
1 Removed stopwords.
2 Did not perform word stemming.
1http://infomotions.com/etexts/gutenberg/dirs/etext04/suall11.txt
2http://www.cs.nyu.edu/eroweis/data.html
3http://ai.stanford.edu/egal/Data/NIPS/
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Graphical Model
N-gram Topics Over Time Model

I

α

θ

ti−1 ti ti+1xi xi+1

zi−1 zi zi+1

wi−1 wi wi+1

D

TW
ψγ

T

φβ δ σ
TW

Ω

xi+2

Fig. 1. Our model
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Topics Over Time (TOT) [?]
Generative Process

1 Draw T multinomials φz
from a Dirichlet Prior β,
one for each topic z

2 For each document d ,
draw a multinomial θ(d)

from a Dirichlet prior α;
then for each word w (d)

i in
the document d

1 Draw a topic zd
i from

Multinomial θ(d)

2 Draw a word w (d)
i from

Multinomial φz(d)
i

3 Draw a timestamp t (d)
i

from Beta Ωz(d)
i

Topics Over Time Model (TOT)

I

w t

z

θ

α

Ωφ

β

D
Nd

T

Fig. 1. TOT model
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Qualitative Results
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Year

Our Model � Mexican War

 

 

1800 1850 1900 1950 2000
0

2000

4000

6000

Year

TOT � Mexican War

 

 

1. east bank 8. military
2. american coins 9. general herrera

3. mexican flag 10. foreign coin
4. separate independent 11. military usurper

5. american commonwealth 12. mexican treasury
6. mexican population 13. invaded texas

7. texan troops 14. veteran troops

1. mexico 8. territory
2. texas 9. army
3. war 10. peace

4. mexican 11. act
5. united 12. policy

6. country 13. foreign
7. government 14. citizens
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Qualitative Results
Topics changes over time

1800 1850 1900 1950 2000
0

2000

4000

6000

Year

Our Model � Panama Canal

1800 1850 1900 1950 2000
0

2000

4000

6000

Year

TOT � Panama Canal

1. panama canal 8. united states senate
2. isthmian canal 9. french canal company

3. isthmus panama 10. caribbean sea
4. republic panama 11. panama canal bonds

5. united states government 12. panama
6. united states 13. american control
7. state panama 14. canal

1. government 8. spanish
2. cuba 9. island

3. islands 10. act
4. international 11. commission

5. powers 12. officers
6. gold 13. spain

7. action 14. rico
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Qualitative Results
Topics changes over time - TOT
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Figure: Top ten probable phrases from the posterior inference in
NIPS year-wise.
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Qualitative Results
Topics changes over time - Our Model

I
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Figure: Top ten probable phrases from the posterior inference in
NIPS year-wise.
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Qualitative Results
Topics changes over time

1990 1995 2000 2005
0

1000

2000

3000

4000

5000

 

 

1. hidden unit 6. learning algorithms
2. neural net 7. error signals
3. input layer 8. recurrent connections

4. recurrent network 9. training pattern
5. hidden layers 10. recurrent cascade

1. state 6. sequences
2. time 7. recurrent

3. sequence 8. models
4. states 9. markov
5. model 10. transition

Figure: A topic related to “recurrent NNs” comprising of n-gram words
obtained from both the models.
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Quantitative Results
Predicting decade on State-of-the-Union dataset

1 Computed the time-stamp prediction performance.
2 Learn a model on some subset of the data randomly

sampled from the collection.
3 Given a new document, compute the likelihood of the

decade prediction.

L1 Error E(L1) Accuracy
Our Model 1.60 1.65 0.25

TOT 1.95 1.99 0.20

Table: Results of decade prediction in the State-of-the-Union
speeches dataset.
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MedLDA Topic Model [?]
Properties

1 Considers side information
during learning.

2 Side information, for
example, class labels.

3 Side information can help
generate more fine-grained
topics.

4 Assumes a document as a
bag-of-words.

5 Problem
Cannot capture the
semantic storyline in the
document.

Graphical Model
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n

wd
n

Nd

θdα

D

M

L

yd

φ

η
β
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Our Supervised Topic Model
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Results

Dataset 20 Newsgroups
Models Our Model gMedLDA vMedLDA sLDA DiscLDA LDA LDA+SVM BTM BTM+SVM LDACOL LDACOL+SVM TNG TNG+SVM NTSeg NTSeg+SVM SVM
Topics 80 50 30 60 70 50 50 80 80 60 70 70 60 60 60

Pre
Rec
F1

0.945
0.916
0.930

0.869
0.869
0.868

0.865
0.865
0.857

0.805
0.812
0.799

0.756
0.780
0.741

0.859
0.859
0.858

0.835
0.920
0.862

0.877
0.848
0.862

0.835
0.920
0.862

0.843
0.914
0.862

0.845
0.932
0.864

0.845
0.932
0.865

0.832
0.866
0.861

0.766
0.905
0.866

0.869
0.845
0.858

0.825
0.910
0.852

Dataset OHSUMED-23
Models Our Model gMedLDA vMedLDA sLDA DiscLDA LDA LDA+SVM BTM BTM+SVM LDACOL LDACOL+SVM TNG TNG+SVM NTSeg NTSeg+SVM SVM
Topics 70 40 60 60 70 40 40 60 40 50 50 60 60 40 40

Pre
Rec
F1

0.496
0.915
0.643

0.456
0.814
0.633

0.489
0.821
0.629

0.456
0.802
0.620

0.402
0.735
0.587

0.465
0.801
0.626

0.463
0.798
0.631

0.422
0.767
0.610

0.545
0.776
0.622

0.534
0.742
0.630

0.534
0.744
0.625

0.432
0.711
0.623

0.442
0.710
0.620

0.531
0.779
0.634

0.522
0.765
0.623

0.483
0.903
0.630
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Concluding Remarks

We have presented a topic segmentation model that:
Maintains the document structure such as paragraphs and
sentences
Keeps the order of the words intact

We have applied our model in multitudes of text mining
tasks

We have obtained good improvement over the
state-of-the-art models
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Thank You
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Bayesian Nonparametrics - Remember this?

One Limitation
The variable Z has to be
explicitly pre-defined.

Graphical Model - LDA

N

w

z

M
Z

θ α

φ

β

Number of latent topics
Variable Z
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Nonparametric N-gram Model
α
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µ η
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Hierarchical Dirichlet Processes (HDP) [?]
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Document Classification Results

Models Precision Recall F-Measure
LDA 0.514 0.476 0.501
BTM 0.501 0.466 0.499

LDACOL 0.518 0.472 0.509
TNG 0.520 0.469 0.509
HDP 0.518 0.476 0.504
NHDP 0.496 0.491 0.483

NNTM-1 0.526 0.499 0.513
NNTM-2 0.501 0.438 0.509

Table: Computer Dataset

Models Precision Recall F-Measure
LDA 0.416 0.392 0.392
BTM 0.401 0.376 0.376

LDACOL 0.405 0.322 0.394
TNG 0.411 0.339 0.399
HDP 0.416 0.401 0.405
NHDP 0.408 0.366 0.372

NNTM-1 0.415 0.405 0.405
NNTM-2 0.420 0.409 0.410

Table: Science Dataset
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Document Classification Results

Models Precision Recall F-Measure
LDA 0.412 0.401 0.376
BTM 0.415 0.401 0.398

LDACOL 0.416 0.402 0.389
TNG 0.411 0.399 0.399
HDP 0.418 0.401 0.405
NHDP 0.402 0.380 0.401

NNTM-1 0.416 0.401 0.402
NNTM-2 0.418 0.405 0.410

Table: Politics Dataset

Models Precision Recall F-Measure
LDA 0.301 0.296 0.294
BTM 0.299 0.299 0.295

LDACOL 0.301 0.294 0.299
TNG 0.308 0.301 0.302
HDP 0.309 0.302 0.286
NHDP 0.302 0.296 0.292

NNTM-1 0.302 0.299 0.293
NNTM-2 0.303 0.301 0.303

Table: Sports Dataset
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Readability - Some Traditional Readability Methods

The Flesch reading ease score is given by the following
formula:

206.835−1.015× Number of words
Number of sentences︸ ︷︷ ︸

Syntactic component

−84.6×Number of syllables
Number of words︸ ︷︷ ︸
Semantic component

The Flesch-Kincaid reading ease formula is given by:

0.39× Number of words
Number of sentences︸ ︷︷ ︸

Syntactic component

+11.8×Number of syllables
Number of words︸ ︷︷ ︸
Semantic component

−15.59
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Our Approach - Terrain Model

W ≈ Ŵ = USVT

Word difficulty scores:

minimize
[γx

n ]
||~̂rx − [γx

n ]T L̂x ||

subject to
Nd∑

n=1

γx
n = 1, γx

n ≥ 0

Cohesion:

ζj =

∑Sj−1
s=1 ν( ~∆s, ~∆s+1)

Sj
τ
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