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Abstract— Searching for domain-specific related information
has gained a high popularity in recent years. Naturally, everyone
is not at par with each other when it comes to knowledge about
the concepts of a domain. A doctor may be well versed in her
field of specialization and probably would search for advanced
medical documents on the Internet. But she may look for a much
simpler material related to Computer Programming. However,
current information retrieval (IR) systems just return a mixed
set of results based on similarity and popularity of the web
pages. Existing methods which have tried to address the issue of
matching readers with texts in domain-specific IR either use an
ontology or some seed concepts thereby limiting their application
in certain domains only. Moreover, readability methods cannot
address the issue in domain-specific IR ranking because they fail
to give precise prediction when applied on web pages. We address
this problem in domain-specific search using a conceptual model
where the sequence of the terms in a document is modeled as a
connected conceptual terrain. Our model has achieved significant
improvement in ranking documents by technical readability.

I. INTRODUCTION

Technical readability relates to the problem of reading

difficulty in domain-specific documents. In a study conducted

by Pew Internet1, it has been concluded that fifty two million

American adults have used the Internet to get health related

information. This clearly portrays the popularity of domain-

specific search. People having diverse background query web

search engines or domain-specific vertical search engines to

find a document which is both relevant and can fit the level of

understanding. A student might search for “VLSI” and wants

conceptually very basic content which is easily comprehen-

sible. In contrast, a researcher specializing in “VLSI” will

expect completely different set of results from an Information

Retrieval (IR) system. It is indeed difficult to cater for such

needs without building a user model [1] for every user and

reflect results accordingly. But building a user model for every

user requires a huge amount of individual user session data

[2]. Search engines need to record every search session and

clicks of the user in order to accomplish personalization of

the search results. Many users might not want their sessions

to be recorded due to privacy concerns [3].

Present general web search engines cover a diverse range

of topics. They mainly use similarity and popularity based

methods to find a web page which is a close match to the

1http://www.pewinternet.org/Reports/2000/The-Online-Health-Care-
Revolution/Summary.aspx

Rank URL Title Category 
1 en.wikipedia.org/wiki/Biopsy Biopsy Educational 
2 webmd.com/cancer/what-is-a-biopsy Biopsy Technical 
3 nhs.uk/conditions/biopsy Biopsy Technical 
4 nlm.nih.gov/medlineplus/ency/article/003416.htm Biopsy Technical 
5 nlm.nih.gov/medlineplus/ency/article/003920.htm Breast biopsy Technical 
6 netdoctor.co.uk/health_advice/examinations/biopsy.htm Biopsy Educational 
7 breastcancer.org/symptoms/testing/types/biopsy.jsp Biopsy Technical 
8 medterms.com/script/main/art.asp?articlekey=2466 Biopsy definition... Technical 
9 breastbiopsy.com/ Breast Care: Mammograms… Educational 
10 cancer.gov/dictionary?cdrid=45164 Definition of biopsy Educational 

Fig. 1. Ranked list of web pages obtained from Google for the query:
“biopsy”.

users’ query [4]. Latent Semantic Indexing (LSI) [5], [6] based

retrieval has been applied to match the readers with texts using

user studies [7]. But LSI for large scale retrieval of documents

incurs huge computational cost as queries have to be folded-in

the latent space every time a new query is issued [5].

Consider a domain-specific query “biopsy”. We asked a

student who was not well versed in Medical Science to query

this term on Google. We show the top ten results that was

returned by Google in Figure 1. After clicking on the top

result, namely Wikipedia and reading the text, he found that

the page was too technical for him as it contained lot of

domain-specific terms which required thorough understanding

about other medical terminologies. He then sifted through

several documents down the ranked list and eventually found a

relatively simple web page at the tenth position, which fairly

matched his technical comprehension level as the web page

defined the jargon in simple terms. So, simply re-ordering

the results automatically based on the choice of technical

readability of the user will aid the user in getting relevant

results for this user. In this case, a relevant document is one

which not only follows query-document similarity but is also a

good match for technical readability. Although it requires the

search engine such as Google to classify queries as domain-

specific ones, but we do not address query classification task

in this paper. Similar approach to domain-specific ranking on

web search engines has also been proposed in [4], where the

authors did not address query classification task.

If results are presented to the user in mixed order of

technical readability, then the user needs to spend a lot of time

to find the web page which could suit his understanding level.

It is indeed challenging, though not impossible, for a search

engine to predict the intent or the technical readability level

from the query itself. But determining the technical readability

level of a person from query is also very challenging without

user data for personalization of search results. In addition,
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most of the queries are short and ambiguous [8]. An alternative

solution is to provide an interface to let a user select her

own technical readability level using a slider on the search

result page as described in [9] or a feature recently introduced

by Google (under More Search Tools section) for ordering

search results based on “reading level” where a user adjusts

the reading level based on her requirements. This generalized

feature can be an option in case user data is not available for

personalization.

We present an unsupervised method for re-ranking domain-

specific documents given a query based on the technical

readability of documents. Technical readability relates to read-

ing difficulty of technical documents. We first obtain search

results for a query from an IR system which mainly aids

in retrieving relevant documents but in a mixed technical

readability order. Subsequently, documents retrieved by an IR

system are automatically re-ranked based on the readability

of the documents using our proposed model. The contrasting

feature of our approach from the previous readability based

approaches is that apart from the obvious domain-specific

terms with high syllable counts (they can also be easily cap-

tured by the readability formulae), our model can also capture

domain-specific terms which have low-syllable counts and are

central to a particular technical context such as “shock” (in

the context of earthquakes) which has only one syllable, “star”

(in computer networking) again one syllable. To accomplish

this goal, we employ a latent semantic method known as

LSI. LSI exploits the co-occurrence matrix to bring out new

structural relationships between the terms and documents in

the latent space. A common observation in the LSI latent space

is that terms which are semantically linked with the contents

of the documents come close to the document vector where

as common terms move far from the document vector. In the

low-dimensional latent space, we compute cohesion between

the sequences of terms. We compute the aggregated technical

readability via a terrain traversal cost. This cost will be used

to re-rank the search results obtained from a general purpose

information retrieval system.

Our research contributes in the following ways: Our ap-

proach can differentiate the technical centrality based on

contextual information (semantics of the text) and does not

depend on text’s surface level features. Past works mainly

unsupervised readability methods cannot capture such feature

and hence underperform in domain-specific documents. The

main innovation of our approach is in using a conceptual

model to tackle technical readability problem. Domain-specific

readability methods proposed in the past have made use of an

ontology or some seed concepts in their method. This limits

the scalability of their method in other domains. We conduct

experiments in two popular domains and compare the ranking

effectiveness of our model with the current state-of-the-art

methods.

II. LITERATURE REVIEW

Much research has been done in measuring the text’s

readability, for example [10], [11], [12]. But readability tests

do not perform well on technical texts and web pages [13],

[14]. Readability metrics mainly work on syllables and number

of characters, sentence difficulty, and common terms etc,

which are surface level features of a text. Hence, they are

not effective when finding the technical readability of text [13]

and [15]. Readability formulae measure the difficulty of a par-

ticular discourse using two main components - syntactic and

semantic. The syntactic component measures the individual

sentence length and so on whereas the semantic component

measures individual term’s syllable counts. More information

about these components can be found in [13], [14]. Nakatani et

al. [16] describe a way to re-rank the search results of a web

search engine (Easiest-First Search) in descending order of

their comprehensibility using Japanese Wikipedia. They have

also used readability based method in their approach.

Readability methods do not give reliable results when

applied on web pages [14] and very large text collections as

a whole because of high computational costs [13]. Consider

short snippets of texts taken from Wikipedia about “biopsy”.

1. A biopsy is a medical test involving sampling of cells or
tissues for examination.
2. A biopsy of the temporal arteries is often performed for
suspected vasculitis.

Sentence 1 has a Flesch reading ease of 41.55 (marginally

readable) and Sentence 2 has 18.40 (difficult text). But ex-

amining these two texts closely, one can notice that both

are difficult for a general reader. In the first sentence, terms

used although appear common to a readability formula, but

require some technical knowledge to comprehend. Terms such

as “sampling”, “cells” and “tissues” carry domain-specific

technical meaning. Consider another example “Similar and
popular web pages.” For a readability formula, terms such as

“similar” and “popular” are common. But these two terms

carry underlying technical meaning in the domain of IR. One

objective of our method is to address this issue.

Some supervised machine learning approaches have also

been studied. Language modeling approach has been applied

to readability [14] where the authors describe a smoothed

unigram model for computing the readability of non-traditional

documents like web pages. Their method computes proba-

bilities of every token in the corpus based on the usage

across documents classified into various American grade lev-

els. Another work [17] uses Support Vector Machines (SVM)

and the authors have used an automated method for recog-

nizing the reading levels of texts from user queries. They

have used syntactic and vocabulary based features to train

the classifier. Topic familiarity is different from traditional

readability [9] where the authors study the re-ranking of

search engine results based on familiarity. The authors suggest

that traditional readability methods cannot predict familiarity

level of a document. The authors inferred that stop words

are the most important feature in their familiarity classifier.

Importance of conjunctions has also been studied in [18], [19]

where it has been concluded that conjunctions help an average

reader in comprehending a discourse. In [17], the authors use

SVM to determine the reading level from queries. Supervised

40



machine learning approaches need huge training data labeled

as introductory, intermediate or advanced [20], which is the

limitation of the supervised methods. In contrast, our method

does not need any annotated data.

A recent study conducted in [21] describes the personaliza-

tion aspect of ranking the search results (apart from general

search engine ranking). The authors study key problems of

the estimation of user proficiency, the search result difficulty

and re-ranking of the search results based on readability. Other

works which have considered personalization include [20] and

[22]. Some works have considered semantic content in text by

using diverse linguistic features [23], [24] but have mainly

focused on classification for text quality rather than ranking

and the prime focus of IR being ranking [25]. Moreover,

both works have adopted linguistic means to extract features

for classifier. Also, in [24], the authors have presented their

work as a proof-of-concept and the authors have stated that

such feature extraction still does not exist. In [26], the author

proposes document ranking based on text quality.

In [13], the authors illustrate the shortcomings of readability

metrics when applied to technical documents. They use an

external domain-specific knowledge base which is an “ontol-

ogy tree”. They describe the notion of document scope and

document cohesion and hypothesize that these two factors

aid in determining the concept level readability of text. One

problem with their method is that they need a domain-specific

ontology, where as our method does not need any ontology

for technical term detection. Zhao et al. [27] describe an

iterative method for computing the readability of text but the

limitation of their approach is that their method needs some

seed technical concepts for initialization. We have previously

described a model [28], [29] using latent semantic indexing [5]

in which they compute document cohesion and technicality.

The model and empirical results are quite preliminary.

In summary, our method is better than previous works in the

following ways: 1) Our method does not need any domain-

specific ontology to detect technical terms in a document.

2) Our method does not require any private user data for

personalization. We have an option to let user specify her own

reading level. 3) Our method improves upon the shortcoming

of the readability metrics by capturing the semantics of text

than surface-level features. 4) Our method can be effectively

applied on domain-specific search systems such as PubMed

search and vertical search engines, which mainly deal with

domain-specific searching. 4) Our method does not need any

expensive annotated data for learning.

III. THE CONCEPTUAL TERRAIN MODEL

To effectively model the technical readability of a document,

we exploit the latent concept information embodied in a

document. We therefore consider the Latent Semantic Indexing

(LSI) approach. In our work we compute a term’s technical

difficulty in the latent space and then connect them sequen-

tially. The setup can be viewed as a terrain. One observation

in the latent space is that terms which are coherently linked

with the document are close to their document vectors in the

latent space derived from a set of domain-specific documents

[30] and semantically similar documents and terms come

close to each other. The major factor that aids in bringing

semantically coherent terms close their document vectors is

that in a large corpus, terms normally overlap across several

documents. Common terms will occur in several documents

whereas domain-specific terms will occur rarely across several

documents in the collection. Thus, the more the term is shared

across several documents, the lesser important it becomes.

This property helps techniques such as LSI to bring out latent

structural information embodied in the document together by

coherently linking the terms with the documents. In domain-

specific documents coherent terms are mainly jargon because

the domain-specific documents mainly describe them and thus

they remain central to the technical theme of that document

in the entire body of the document.

In LSI, computing the SVD of a matrix was generally

computationally expensive both in space and time complexity

[31]. But with the fast development of better algorithms to

compute the SVD, such concerns both in terms of time and

space complexities have been addressed [32], [33], [34]. Some

methods do not even compute the SVD and adopt a completely

different approach for faster latent concept finding such as

Random Projection method [35].

The LSI model has some limitations such as losing im-

portant structural information from the document which could

prove useful in leveraging extra information from the text [36].

The process of technical discourse comprehension involves the

identification of the inherent meaning of technical terms and

continuity of the same topical theme across the language of

discourse [37] so that a reader is able to relate with other parts

of the text. Hence we compute the term difficulty and term

cohesion which measures cohesion in sequence so that we can

capture the major term difficulties and conceptual leaps. The

greater the technical readability of a term, the more cognitive

load a user needs to expend in order to find out the inherent

meaning of the term. In technical texts, cognitive difficulties

will mainly arise in places where a reader encounters a

domain-specific jargon or a phrase expressing certain complex

concept [38]. Comprehending the discourse also becomes

tougher when the topical correlation with the surrounding

texts is low [39]. In reality, the human reading process and

comprehension may be more complicated than what we have

assumed here. For example, we can consider prior knowledge

such as considering the past contexts which she has already

read, for instance, past paragraphs, last n terms, n-grams,

even previous documents already read related to the current

one. Such propositions would indeed substantially increase the

computational complexity of the model. Thus we consider

the past one term as a contextual history which we believe

can help capture major conceptual leaps when transiting from

one term to another in sequence and such consideration is

computationally less expensive for large datasets. In [18], the

authors state that texts frequently exhibit varying degrees of

cohesion in different sections. The start of the text cannot be

cohesive with the later sections. Based on such consideration,
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we develop a terrain model where we maintain the order of

the terms.

A. Term Centrality

Term Centrality is a measure of cohesion between the term

and document vectors in low dimensional latent space. The

closer a term is to the document in the latent space, the more

central it is in the technical context. In the latent space, a

term which contributes with more synergy will be close to

its document vector and unrelated terms will be relegated as

unimportant under that technical theme [30]. For example,

a document which describes about “earthquakes” will have

terms such as “shock”, “seismic”, “shake”, “earth” as central

terms (if the document contains these terms). We denote “term

centrality” as Δ(d)
tn

for the term t at position n in the document

d whose corresponding vectors in the latent space (i.e., term

and document vectors) are separated by the Euclidean distance,

ρ
(d)
tn

, as follows:

Δ(d)
tn

=
1

ρ
(d)
tn

+ ψ
(1)

where ψ is a very small constant added to accommodate the

case when ρ
(d)
tn

= 0 and in general ψ << min(ρ(d)
tn

). The

lesser the distance between the term vector and the document

vector, the higher will be Δ(d)
tn

. The centrality of general terms

will be low because of their large semantic distance from the

document vectors.

B. Term Cohesion

In the LSI latent space, terms with similar semantic meaning

tend to cluster close to each other. In order to comprehend a

piece of text, semantic associations between the terms with

other terms in the vicinity is essential. It is so because the

alignment of meaning in a textual discourse depends the

contextual history [40]. This results in the continuity of an

idea in text. Studies have been conducted about such cohesive

phenomenon in texts, for example, in [37], [40]. In our model,

cohesion is computed between the two consecutive terms in a

document. Let d be a particular document in the corpus. We

use the Euclidean distance formula in the LSI latent space to

compute the term cohesion between the term tn and the term

tn+1, which we denote as as θ̂(tn,tn+1).

By hopping/traversing from one term to another i.e., two

consecutive terms in the terrain, we attempt to capture concep-

tual leaps while traversing the terrain. The more the conceptual

leap, the more difficult will be the path of the reader. This

affects the overall technical readability of a document. If a

sequence terrain is comprised of series of domain-specific

terms which are separated by large semantic distance, then

a typical reader will probably leave the document and search

for a more technically simpler and semantically cohesive piece

of discourse.

In order to normalize the semantic distance between the two

consecutive terms tn and tn+1, we proceed this way:

Step 1: Compute in the latent space the Euclidean distance

θ̂(tn,τ) between tn and each term τ which follows tn in the

entire corpus.

Step 2: Normalize the values such that the total sum of the

normalized distances is 1. We denote the normalized distance

as θ(tn,tn+1), which is the normalized semantic distance be-

tween the terms tn and tn+1. We use the following formula:

θ(tn,tn+1) =
θ̂(tn,tn+1)∑

τ θ̂(tn,τ)

(2)

C. Term Difficulty

Term difficulty is the relative technical readability of a

term with respect to other terms in the document which

is characterized by the document frequency count and its

centrality to a document. The term difficulty score ξ̂
(d)
tn

for

every term in the document is formulated as:

ξ̂
(d)
tn

= idftn
× Δ(d)

tn
(3)

where Δ(d)
tn

is the centrality component given in Equation 1.

idftn
is the Inverse Document Frequency as in [41].

Documents describing about one particular technical dis-

course will have related terms close to it in the latent space.

However, cases might arise that a document is specific about

a technically simple term like “food”, “water”, etc which do

not contribute considerably in technical readability. Technical

difficulties of such terms need to be discounted and the

idftn
has been introduced as a discounting component for

those less technical central terms. Equation 3 ensures that

the term difficulty of a general non-central term is always

low because both the centrality component Δ(d)
tn

and the idftn

are small. However, terms which are common but central will

get relatively higher score when compared with non-central

common function words as the centrality component Δ(d)
tn

will

be high. In cases where both the central and idftn
are high,

that term will be highly difficult in that technical document.

Equation 3 gives non-standardized values of the term diffi-

culties. We normalize ξ̂
(d)
tn

in such a way that the monotonicity

of the global importance of terms is preserved. Hence, we

transform the values to [0, 1]. The final term difficulty is

computed as follows:

Step 1: Construct the term-document matrix such that terms

are represented along the rows and documents are represented

along the columns i.e., terms by document matrix. The ele-

ments of the term document matrix are the ξ̂
(d)
tn

values which

denotes the term difficulty of term tn in document d.

Step 2: Normalize the values such that sum of all elements in

each row is 1. Let D represent the total number of documents

in the corpus. We adopt the following formula:

ξ
(d)
tn

=
ξ̂
(d)
tn∑D

i=1 ξ̂
(di)
tn

(4)

D. Cost Computation to Facilitate Ranking

We conjecture that the readability is directly proportional

to the term difficulty and also term cohesion i.e., semantic

distance between the two consecutive terms. This leads us to

the fact that the more the term difficulty and the greater the

semantic distance, the more will be the technical readability
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problem in that portion of the text where the sequence of

terms appears. Assume a reader begins from term tn in the

document d with term difficulty denoted as ξ
(d)
tn

and hops to

the next term tn+1 in sequence (term difficulty score denoted

as ξ
(d)
tn+1

covering a semantic distance θ(tn,tn+1) in between

the two terms in the latent space. We compute the traversal

cost, C
(d)
(tn,tn+1) for each sequential term bigram in document

d in the conceptual terrain which is expressed as:

C
(d)
(tn,tn+1) = α

[
ξ
(d)
tn

+ ξ
(d)
tn+1

]
+ (1 − α)θ(tn,tn+1) (5)

where α (0 ≤ α ≤ 1) is a parameter indicating the role that

each of the components plays in determining the technical

readability of a document. θ(tn,tn+1) is calculated as in Equa-

tion 2.

A closer look at Equation 5 reveals that transitions in the

terrain take place considering two terms in sequence in the

document’s conceptual terrain. It is because transitions consist

of the current history in context and one past history in

memory in order to compute the relative conceptual leap that is

needed to connect the two pieces of terms together. Consider a

situation when there are two consecutive difficult terms located

semantically distant from each other. In this case the overall

conceptual difficulty for this transition will be high because

of the technical difficulties of the two terms and the semantic

separation between them. Another instance arises when two

difficult terms are semantically close to each other. In that case,

the individual term difficulty component plays a major role in

conceptual difficulty of the discourse. The premise is that even

though the terms are cohesive, their individual difficulties are

high making discourse comprehension difficult for the reader.

What we are measuring from Equation 5 is the role of term

difficulty and inter-term hops coupled together to compute the

overall bigram transition cost as both difficulty and inter-term

hops play some role in the overall conceptual difficult of a

discourse and locally at every transition.

E. Ranking

The prime motive of our approach is to find the relative tech-

nical readability (domain-specific readability) of a document d
when moving over the text sequentially in fixed leaps between

bigrams. The difficulty of terms is computed by the scores

in the latent space that represent the deviation from common

terms and the cost of computing cohesion between the terms

in sequence. We aggregate the difficulties and transitions costs

obtained from Equation 5 to come up with the document’s

technical readability, Ed formulated as:

E(d) =

∑Td−1
n=1 C

(d)
(tn,tn+1)

Td − 1
(6)

where C
(d)
(tn,tn+1) is defined in Equation 5 and Td is the number

of terms in d.

Existing similarity based IR systems are not designed to

retrieve documents based on the technical comprehensibility

and neither do they give any option to the user to specify

the technical readability. In contrast, our re-ranking interface

provides the choice where the user can specify “Beginner”,

“Intermediate” or “Advanced”. This means whether the user

wants to search for conceptually simple, conceptually inter-

mediate or conceptually advanced level technical documents.

This does away with several anomalies, for instance, if a user

enters a difficult technical jargon, for example, “ornithology”
but wants technically simple documents related to “birds”, or a

user enters technically simple term, for example, “money” but

wants technically advanced documents related to “finance”.

IV. EXPERIMENTS AND RESULTS

A. Data Set and Text Preprocessing

Existing standard IR test collections do not fulfill our

purpose of evaluation as we need technical readability judg-

ment on each document and current IR test collections have

relevance judgments. In order to show the full operational

characteristics of our model, we build a large test collection

of technical web pages of our own. We chose two popular

domains 1) Psychology and, 2) Science. In all, we crawled

about 170,000 web pages in Psychology and 300,000 web

pages in Science. Enlisting every crawled resource would be

too long but we name a few popular resources from where we

crawled the web pages: 1) Wikipedia, 2) Psychology.com, 3)

PubMed research papers2, 4) ScienceDaily, 5) ScienceForKids,

6) PhysicsForKids, 7) Kids Wikipedia, and some more re-

lated web resources. By crawling web pages from different

resources available online we are able to collect technical con-

tents which fit the understanding level and difficulty for diverse

backgrounds of people. No term stemming was performed.

We prepared two sets of documents, one with stop words3

kept and another with stop words removed. Removing stop

words breaks the natural semantic structure of the document,

but this will capture conceptual leaps between the sequences

of content words. Moreover, stop words normally do not aid

in technical readability of text but they connect the conceptual

terrain which lends some meaning to text.

B. Experimental Setup

We evaluate the effectiveness of our model and compare

with other state-of-the-art approaches in terms of technical

readability prediction and ranking. We also investigate whether

our method can perform significantly better in different do-

mains. In our setup we selected some queries from AOL

query logs in each domain and used an IR engine to conduct

document retrieval. After that, the retrieved documents were

re-ranked automatically. First, we searched the query logs

for queries containing Science and Psychology jargon. For

example, simply searching for the term “science” in the

AOL query logs retrieves 39026 query/URL pairs. Then we

manually sampled out a subset of queries. The queries had

two to three terms on average. Moreover they were not

ambiguous and were informational in nature. Another criterion

for selecting the queries was that a good match can be found

2http://www.ncbi.nlm.nih.gov/pmc/tools/ftp/
3http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-

list/english.stop
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between the terms present in the query and the documents that

we had crawled in our test collection. This would increase the

number of relevant documents retrieved by an IR system. We

had selected 110 queries in Psychology and 150 in Science.

We used Zettair4 to conduct retrieval and obtained a ranked list

using the Okapi BM25 [42] ranking function. We then selected

the top-k documents retrieved from the ranked list where k=10

in both Science and Psychology for evaluation purpose. The

reason for selecting the top-k documents for evaluation is that

we observed that these top-k documents from Zettair system

were all relevant to the query and were in mixed order of

technical readability as Okapi BM25 is not designed to rank

documents based on technical readability. These documents

were then re-ranked automatically from conceptually simple

to difficult using our proposed models as well as some existing

models for comparison. Similar kind of experimental setup

and document re-ranking scheme has been adopted in [13],

[16]. The reason for re-ranking from conceptually simple to

advanced in our experiments is as follows. According to the

studies undertaken relating to the behavior of novices and

expert web searchers, it has been found that an increasing

number of users are searching for information in unfamiliar

domains [43]. Hence, most of them will probably look for

introductory level documents. A study has also found that

domain experts employ complex search strategies such as

usage of jargon, complex phrases to successfully retrieve

documents based on their technical readability level [44], [45],

[46]. Therefore, ranking from conceptually simple to advanced

fits most of the users. As stated previously in [13], [16], the

authors also ranked documents from introductory to advanced

when they tested their model on users possessing average

level of knowledge about health care but have compared their

method only against readability methods.

We refer “Terrain (Stop)” as our terrain model keeping the

stop words intact and “Terrain (No Stop)” as our terrain model

with stop words removal. The number of latent concepts in LSI

was 200. Normally 150-200 factors have shown to give good

performance [31]. The parameter α in Equation 5 was set to

0.5 so that the two components viz. the term difficulty and term

cohesion could equally contribute in determining the overall

document’s conceptual difficulty. The existing unsupervised

methods used for our comparative experiments include: 1)

Okapi BM25 described in [42], 2) Cosine similarity based

measure in the vector space [47], 3) Dirichlet Smoothed query

likelihood Language Model [48] with default value for μ
provided in Zettair.

We also compared with the popular unsupervised readabil-

ity scores, namely, ARI: Automated Readability Index [49],

Coleman-Liau [50], Flesch Reading Ease formula [51], Fog

[52], LIX [53], and SMOG [54]. Our terrain model captures

on the semantics of text and does not take into account its

syntax. Hence it would be more appropriate to compare with

the semantic components of the readability methods. More

details about the semantic components of readability methods

4http://www.seg.rmit.edu.au/zettair/index.html

TABLE I

TECHNICAL READABILITY JUDGMENT GUIDELINES GIVEN TO THE HUMAN

JUDGES.

Annotation Guidelines 
The relative technical difficulty of the document that you are currently reading is:

4 Very low. 
3 Reasonably low. 
2 Borderline. 
1 Reasonably high. 
0 Very high. 

can be found in [13]. For each readability formula, we obtain

a semantic readability score for every document. Then the

documents were re-ranked in descending order of readability

score.

It is important to mention that rationale behind choosing

the readability methods as one of the main comparative

methods. One may argue that since these methods are quite

old and may not be very effective. However, they are the

closest comparative methods to compare with because they

are completely unsupervised and do not require any domain-

specific ontology as in [13] or some seed set of concepts to

initialize their algorithm as in [27]. Hence, it will be more fair

to compare with the readability methods. Although we know

that ranking functions such as BM25 etc were not designed

to handle readability problem, but we compare with these

methods because they are purely unsupervised and are widely

used. Moreover, the results will support our claim that they

cannot rank documents by readability in practice.

C. Evaluation Metric

To obtain a ground truth of the technical readability of the

documents for evaluation purpose, human annotators who were

undergraduate students having varied background were invited.

They had basic knowledge about Science and Psychology.

The annotators were fluent in reading English passages. They

gave annotations following the guidelines given in Table I.

They were also asked to read the article sequentially without

skipping any of the terms. In the beginning we acquainted

them with the main aim of the study and also showed them

some sample documents from our test collection so that

they could get an idea about the relative readability levels

of documents in the collection. The standard deviations of

judgments among the annotators were 1.18 for Science and

1.23 for Psychology.

We evaluate our method using NDCG [55], which is widely

used for IR ranking effectiveness measurement. NDCG is well

suited for our task because it is defined by an explicit position

discount factor and it can leverage the judgments in terms of

multiple ordered categories. The NDCG formula is:

W (i) =
1

Zn

nX

i=1

2r(i) − 1

ln(1 + i)
(7)

where Zn is the normalization constant such that a perfect

list gets a score of 1; r(i) denotes the rank label (readability

label in our case) of the ith document in the ranked list; n
is the length of the ranked list. We computed the NDCG for

each annotator and aggregated the final NDCG by taking the

average.
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Fig. 2. Results obtained in Psychology domain when compared with standard
unsupervised ranking functions. Our results are statistically significant using
paired student t-test (p-value < 0.05)

D. Discussion

Figure 2 shows the results obtained in Psychology domain.

Our terrain model has consistently outperformed major stan-

dard ranking functions. Although it is obvious that traditional

unsupervised ranking functions are not designed to handle

technical readability ranking and our results fit that intuition

very well. We then compare our model with the traditional

readability methods in Figure 3 because they are widely used

unsupervised methods. Although there are other supervised

methods proposed in literature (discussed in Section II) but

they require training data for parameter learning, which is

difficult to collect. Hence, we do not compare our method

against those methods. Our model has also consistently outper-

formed traditional readability methods in ranking documents

by technical readability. This is because readability methods

failed to capture importance of Psychology terms with low

syllable counts such as school, thought, fear etc.

Figure 4 shows the results where we compare against state-

of-the-art ranking functions in Science domain. It again fits

the general intuition that even in Science traditional ranking

functions cannot rank documents based on technical readabil-

ity. Figure 5 shows when we compare our model with the

readability methods in the Science domain, our model has

again outperformed readability methods significantly.

One noticeable observation is that the document set in the

Science domain which contained stop words has performed

better than the set where we removed stop words. Moreover,

in the Psychology domain the performance between the terrain

models in the two different document sets is mostly the same.

This points to the fact that stop words have some role to play

in determining the technical readability of domain-specific

documents.

There are certain inherent qualities in our model which

makes it more superior than the current state-of-the-art read-

ability methods. First of all, we have addressed some of

the major shortcomings present in the readability methods

especially handling cohesion and contextual usage of the

terms. Secondly, our model can capture the difficulty of the

terms even when the terms have low syllable counts.

V. CONCLUSIONS AND FUTURE WORKS

We have presented our domain-specific readability model

which has performed exceptionally well in two domains. By

using a conceptual model to solve the problem, we have
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Fig. 3. Results obtained in Psychology domain when compared with standard
unsupervised readability methods. Our results are statistically significant using
paired student t-test (p-value < 0.05).
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Fig. 4. Results obtained in Science domain when compared with standard
unsupervised ranking functions. Our results are statistically significant using
paired student t-test (p-value < 0.05).

addressed several shortcomings inherent in the heuristic read-

ability methods. We view the setup of the terms and their

semantic relationships in sequence in the document space as

a terrain where we compute the cost of traversal in that docu-

ment terrain. An advantage that our model has is that it does

not need any external domain-specific ontology or knowledge

base to unearth the technical terms in a document. We have

described to components in our model which are cohesion and

difficulty. Cohesion measures semantic relationships between

the terms in sequence whereas difficulty measures individual

term difficulty in a domain. By maintaining the term order in

the document and transiting/hopping from one term to another

sequentially, our model captures term cohesion which is only

dependent on the neighboring terms. In future, we would study

how link structure of the web affects technical readability. We

would also study different fields of a web page can be made

use to determine the technical difficulty of the documents such

as only considering the TITLE fields etc.
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