
Aligning Visual Prototypes with BERT Embeddings for
Few-Shot Learning

ABSTRACT
Few-shot learning (FSL) is the task of learning to recognize previ-
ously unseen categories of images from a small number of training
examples. This is a challenging task, as the available examples may
not be enough to unambiguously determine which visual features
are most characteristic of the considered categories. To alleviate this
issue, we propose a method that additionally takes into account the
names of the image classes. While the use of class names has al-
ready been explored in previous work, our approach differs in two
key aspects. First, while previous work has aimed to directly pre-
dict visual prototypes from word embeddings, we found that bet-
ter results can be obtained by treating visual and text-based proto-
types separately. Second, we propose a simple strategy for learning
class name embeddings using the BERT language model, which we
found to substantially outperform the GloVe vectors that were used
in previous work. We furthermore propose a strategy for dealing
with the high dimensionality of these vectors, inspired by models
for aligning cross-lingual word embeddings. We provide experi-
ments on miniImageNet, CUB and tieredImageNet, showing that
our approach consistently improves the state-of-the-art in metric-
based FSL.

KEYWORDS
Few-shot learning, BERT, multi-modal, metric-based learning

ACM Reference Format:
. 2018. Aligning Visual Prototypes with BERT Embeddings for Few-Shot
Learning. In Woodstock ’18: ACM Symposium on Neural Gaze Detection,
June 03–05, 2018, Woodstock, NY. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Recent years have witnessed significant progress in image classifi-
cation and related computer vision tasks [15, 20, 39, 44, 52], but
most existing methods still require an abundance of labeled train-
ing examples. This stands in stark contrast with humans’ ability to
learn new categories from even a single example. This observation
has fuelled research on designing systems that are capable of rec-
ognizing new image categories after only seeing a small number
of examples, a task which is known as few-shot learning (FSL).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

In this paper, we focus in particular on metric-based FSL meth-
ods [19, 37, 40, 43, 48], which combine strong empirical perfor-
mance with conceptual simplicity.

Metric-based methods aim to learn an embedding space which
encourages generalization, i.e. where images from the same class
are likely to have similar embeddings, even for unseen classes. An
image can then be categorized based on its similarity to prototypes
of the considered classes. Despite significant progress in recent years,
however, few-shot learning remains highly challenging. To allevi-
ate the inherent difficulty of this task, some authors have proposed
models that additionally take into account the name of the image
classes. While these class names may not be available in all appli-
cation settings, in those settings where they are, we can intuitively
expect that they should provide us with meaningful prior knowl-
edge. Two notable examples of models that rely on class names
are AM3 [53] and TRAML [22], both of which use the GloVe [32]
word embedding model for representing class names. In particular,
the AM3 model tries to predict visual prototypes from the embed-
dings of the class names, while TRAML uses the similarity encoded
by the word vectors to adapt the margin of the classifier.

However, standard word vectors, such as those from GloVe, are
strongly influenced by topical similarity. This is illustrated in Table
1, which shows the top-3 most similar classes from miniImageNet
for three example targets. For instance, the nearest neighbours of
catamaran include snorkel and jellyfish. These words are all clearly
topically related, but catamarans are not similar to snorkels or jel-
lyfish. This is problematic for few-shot learning, where we would
intuitively want that class names with similar embeddings denote
categories of the same kind. To address this issue, we propose a sim-
ple strategy for obtaining class name embeddings using the BERT
masked language model [6]. We qualitatively observe that the re-
sulting embeddings are indeed better suited for grouping classes
that are conceptually similar. For instance, as can be seen in Table
1, with the proposed BERT embeddings, the top 2 nearest neigh-
bours are now also boats (being the only remaining boat classes in
miniImageNet), while the third neighbour is also a vehicle. Further-
more, as the example of house finch shows, the BERT embeddings
also tend to model semantic relatedness at a finer-grained level:
while the top neighbours for GloVe are all animals, none of them
are birds. In contrast, the top two neighbours for BERT are birds.

However, BERT embeddings also have the drawback of being
higher-dimensional: the BERT-large vectors on which we rely are
1024-dimensional, compared to 300 dimensions for the standard
GloVe embeddings. This makes it difficult to predict visual proto-
types from these vectors. Therefore, rather than predicting visual
prototypes from the class names, we model the visual and text-
based prototypes separately. Moreover, we also propose a dimen-
sionality reduction strategy, inspired by work on aligning cross-
lingual word embeddings [1], which aims to find a subspace of the

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Woodstock ’18, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

Table 1: Most similar miniImageNet classes to house finch, hor-
izontal bar and catamaran, according to class name embeddings
obtained using GloVe, BERT and the proposed projection of the
BERT embeddings onto a 50-dimensional space (BERTproj).

catamaran house finch horizontal bar

GloVe
snorkel ladybug pencil box

yawl komondor aircraft carrier
jellyfish triceratops beer bottle

BERT
yawl goose parallel bars

aircraft carrier toucan unicycle
school bus ladybug ear

BERTproj

yawl toucan parallel bars
school bus robin scoreboard

aircraft carrier ladybug street sign

BERT embeddings that is maximally aligned with the visual proto-
types. As illustrated in Table 1, the resulting embeddings remain at
least as useful as the original BERT embeddings, despite only be-
ing 50-dimensional. In fact, some of the nearest neighbours for the
low-dimensional vectors are arguably better than those of the BERT
embeddings themselves, e.g. toucan is more similar to house finch
than goose is, while scoreboard and street sign are more meaningful
neighbours of horizontal bar than unicycle and ear.

The main contributions of this paper are as follows: (i) we pro-
pose a simple model for incorporating class names into metric-
based FSL models, in which visual prototypes and text-based proto-
types are decoupled; (ii) we propose and evaluate several strategies
for learning class name embeddings using BERT; (iii) we propose a
strategy for dealing with the high dimensionality of the BERT em-
beddings by identifying the subspace of these embeddings which is
most aligned with the visual prototypes.

2 RELATED WORK
Most few-shot learning methods can be divided into metric-based
[17, 37, 43, 55] and meta-learning based [7, 25, 34] methods, al-
though some other directions have also been explored, such as hal-
lucination based [11, 51, 58] and parameter-generation based [9,
26] methods. Our focus in this paper is on metric-based methods,
which essentially aim to learn a generalizable visual embedding
space. Early metric-based approaches used deep Siamese networks
to compute the similarity between training and test images for the
one-shot object recognition task [19]. In these cases, a query image
is simply assigned to the class of the most similar training image.
Going beyond one-shot learning, [48] proposed Matching Network,
which uses a weighted nearest-neighbor classifier with an attention
mechanism over the features of labeled examples. Another impor-
tant contribution of that work is the introduction of a new training
scheme called episode-based learning, which uses a training pro-
cedure that is more closely aligned with the standard test setting
for few-shot learning (see Section 3). The ProtoNet model from
[40] generates a visual prototype for each class, by simply averag-
ing the embeddings of the available training images. The class of a
query image is then predicted by computing its Euclidean distance

to these prototypes. In the Relation Network [43], rather than fixing
the metric to be Euclidean, the model learns a deep distance metric
to compare each query-support image pair. In addition, some works
have used Graph Convolutional Networks [18] to exploit the rela-
tionship among support and query examples [17, 37]. The FEAT
model, proposed by [55], uses a transformer [47] to contextual-
ize the image features relative to the support set in a given task.
Recently, the Earth Mover’s Distance (EMD) has been adopted as
a metric in DeepEMD [56] to compute a structural distance be-
tween dense image representations to determine image relevance.
The aforementioned methods all rely on global image features. A
few methods have also been proposed that aim to identify finer-
grained local features, such as DN4 [24], SAML [10], STANet [54]
and CTM [23].

The aforementioned methods only depend on visual features. A
few methods also take into account the class names. In AM3 [53],
prototypes are constructed as a weighted average of a visual proto-
type and a prediction from the class name. The relative weight of
both modalities is computed adaptively and can differ from class
to class. More recently, [22] used the class names as part of a mar-
gin based classification model. In this case, the underlying intuition
is that a wider margin should be used for classes that have similar
class names. Within a wider scope, textual features have also been
used for zero-shot image classification [3, 8, 29, 57]. Recently, fu-
elled by the success of transformer based language models such as
BERT [6], a number of approaches have been proposed that train
transformer models on joint image and text inputs, e.g. an image
and its caption [27, 41, 45]. Such models are aimed at tasks such as
image captioning and visual question answering.

3 PROBLEM SETTING
In few-shot learning (FSL), we are given a set of base classes Cbase
and a set of novel classes Cnovel, where Cbase ∩ Cnovel = ∅. Each
class in Cbase has sufficient labeled images, but for the classes in
Cnovel, only a few labeled examples are available. The goal of FSL
is to obtain a classifier that performs well for the novel classes in
Cnovel. Specifically, in the N -way K-shot setting, performance is
evaluated using so-called episodes. In each test episode, N classes
from Cnovel are sampled, and K labelled examples from each class
are made available for training, where K is typically 1 or 5. The
remaining images from the sampled classes are then used as test
examples. The support set of a given episode is the set of sam-
pled training examples. We write it as S =

!
(xsi ,y

s
i)
"ns
i=1, where

ns = N × K , xsi are the sampled training examples and ysi are
the corresponding class labels. Similarly, the query set contains the
sampled test examples and is written as Q =

!
(xqi ,y

q
i)
"nq
i=1.

In this paper, we adopt the episode-based training scheme pro-
posed by [48]. In this case, the model is first trained by repeat-
edly sampling N -way K-shot episodes from Cbase, rather than using
Cbase directly. The way in which the training data from Cbase is pre-
sented thus resembles how the classifier is subsequently evaluated.

4 METHOD
The overview of our proposed architecture is shown in Fig. 1. For
a given episode, the labelled images are used to construct visual
prototypes, as in existing approaches. Each of the class names is

Aligning Visual Prototypes with BERT Embeddings for Few-Shot Learning Woodstock ’18, June 03–05, 2018, Woodstock, NY

Figure 1: Overview of our approach. After obtaining visual and text features, we use a Correlation Exploration Module to obtain
visually meaningful low-dimensional textual prototypes. Both textual and visual prototypes are used in the final image classification
step.

represented by a vector that was learned from some text corpus.
Both the visual prototypes and the class name embeddings feed into
the Correlation Exploration Module (CEM), whose aim is to find a
low-dimensional subspace of the class name embeddings. The re-
sulting textual prototype is then used in combination with the visual
prototype for making the final prediction.

4.1 Visual Features
The visual features fθ (x) ∈ Rnv of an image x are extracted by a
CNN model such as ResNet. Following ProtoNet [40], in the N -
way K-shot setting we construct the visual prototype of a class c
by averaging the visual features of all its training images in some
episode p:

vcp =
1
K

#
{ fθ (xsi) | (x

s
i , c) ∈ Sp } (1)

where Sp =
!
(xsi ,y

s
i)
"ns
i=1 is the support set of episode p.

4.2 Class Name Embeddings
We now explain how BERT [6] is used to get vector representations
of class names. First note that BERT represents frequent words as
a single token and encodes less common words as sequences of
sub-word tokens, called word-pieces. Each of these tokens t is as-
sociated with a static vector t ∈ Rm . The token vectors t are used to
construct the initial representation of a given sentence s = t1, ..., tn ,
which is subsequently fed to a deep transformer model. The output
of this deep transformer model again consists of a sequence of to-
ken vectors, which intuitively represent the meaning of each token
in the specific context of the given sentence. Let us writem(s, i) for
the output representation of ti . When training BERT, some tokens
of each input sentence are replaced by the special token [MASK].
If the token ti was masked, the output vector m(s, i) acts as a pre-
diction for the missing token.

Let C be the set of classes. We first collect for each class c ∈ C
a bag of sentences S(c) = s1, ..., sm mentioning the name of this
class. In particular, for each class name, we sample m = 1000 such
sentences from a given text corpus. We consider two strategies for
learning class embeddings from these sentences. For the first strat-
egy, we replace the entire class name by a single [MASK] token,
and we use the corresponding output vector as the representation of
c. We then take the average of the vectors we thus obtain across the
m sentences. In practice, the classes often correspond to WordNet
synsets, meaning that we may have several synonymous names. In
such cases, we first get a vector for each name from the synset (each
learned from 1000 sentences), and then average the resulting vec-
tors. The underlying assumption of this first approach is that when
the ith token is masked, the prediction m(s, i) essentially encodes
what the given sentence reveals about the meaning of the class c.
This strategy has the important advantage that it can naturally deal
with class names that consist of multiple word-piece tokens. The
second approach uses the full sentence as input, without masking
any words. Following common practice [12, 33], the representation
of c is then obtained by averaging the output vectors of all the word-
piece tokens corresponding to c. We write ncmask and ncnomask for
the embeddings obtained with the first and second method respec-
tively. In addition to using ncmask or ncnomask individually, we will
also experiment with their concatentation ncmask ⊕ ncnomask. We will
furthermore consider variants in which other types of word vectors
are included, such as the GloVe embedding ncglove.

4.3 Dimensionality Reduction
One disadvantage of BERT embeddings is that they are high dimen-
sional, a problem which is exacerbated when using concatenations
of several types of class name embeddings. Furthermore, we can ex-
pect that only some of the information captured by the class name
embeddings may be relevant for image classification. To address

Woodstock ’18, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

both shortcomings, we propose a Correlation Exploration Module
(CEM), whose aim is to find a suitable lower-dimensional subspace
of the class name embeddings.

Specifically, we aim to find linear mappings A ∈ Rmt×d and B ∈
Rmv×d , where mt is the dimension of the class name embeddings,
mv is the dimension of the visual features and d < min(mt ,mv).
Let nc be the considered embedding of the name of class c, and let
vcp be the visual prototype of the same class (for a given episode).
Intuitively, we want ncA to maximally retain the predictive infor-
mation about vcp that is captured by nc . A natural strategy to find
suitable matrices A and B is to use Canonical Correlation Analysis
(CCA). These matrices are then chosen such that the correlations
between the coordinates of ncA and the corresponding coordinates
of vcB are maximized. The advantage of using CCA is that it is
based on well-founded statistical principles and straightforward to
compute. However, it was noted by [1] that CCA is a sub-optimal
choice for aligning cross-lingual word embeddings, which suggests
that it may be a sub-optimal choice for cross-modal alignment as
well. As pointed out in that paper, CCA can be seen as the combina-
tion of three linear transformations: (i) whitening of the initial vec-
tors in the two embedding spaces, (ii) aligning the two spaces us-
ing orthogonal transformations and (iii) dimensionality reduction. It
was found that better results can often be achieved by introducing
an additional de-whitening step, which restores the original covari-
ances. We will consider variants with and without this de-whitening
step, which we will refer to as CCA+D and CCA respectively. The
details of both variants are provided in the Appendix.

4.4 Classification Model
To classify a query image, we follow the set-up of ProtoNet, chang-
ing only the way in which the similarity between query images and
prototypes is computed. In the case of ProtoNet, we have:

s1(q, vcp) = −‖ fθ (q) − vcp ‖22 (2)

The scores for each of the classes are then fed to a softmax layer
to obtain class probabilities; the overall model is trained using the
cross-entropy loss. In the case of FEAT, fθ (q) and vcp are first con-
textualized using a transformer, before computing the squared Eu-
clidean distance, as in (2).

In our setting, we also have a class name embedding nc for each
class c. The most straightforward way of using this embedding is
to estimate a mapping дψ such that дψ (nc) can be used as an ap-
proximation of the visual prototype vcp . This is the strategy which
is also pursued in AM3. However, instead of taking a weighted av-
erage of vcp and дψ (nc) to obtain the final prototype, we keep the
textual and visual prototypes separate. This allows us to use the co-
sine similarity to compare дψ (nc) and fθ (q), which has been found
more suitable than Euclidean distance for comparing vectors that
come from different distributions [9], while keeping the squared
Euclidean distance for comparing vcp and fθ (q). This leads to the
following similarity score:

s2(q, vcp) = −‖ fθ (q) − vcp ‖22 + λ cos(fθ (q),дψ (n
c)) (3)

where λ is a hyper-parameter to control the contribution of the class
name embeddings. To learn дψ , we use a shallow network consist-
ing of a linear transformation onto a 512-dimensional layer with

ReLU activation and batch normalization [16], followed by another
linear transformation.

As mentioned above, learning a suitable mapping дψ is challeng-
ing when nc is high-dimensional. Rather than learning the param-
eters of this mapping as part of the model, we therefore propose
to use the mappings A and B that were found by the Correlation
Exploration Module. The similarity score thus becomes:

s3(q, vcp) = −‖ fθ (q) − vcp ‖22 + λ cos(fθ (q)B,n
cA)

5 EXPERIMENTS
5.1 Experimental Setup

5.1.1 Datasets. We conduct experiments on three benchmark
datasets: miniImageNet [48], tieredImageNet [35] and CUB [49].
MiniImageNet is a subset of the ImageNet dataset [5]. It consists
of 100 classes, each with 600 labeled images of size 84 × 84. We
adopt the common setup introduced by [34], which defines a split
of 64, 16 and 20 classes for training, validation and testing respec-
tively. TieredImageNet is a larger-scale dataset with more classes,
containing 351, 97 and 160 classes for training, validation and test-
ing. The CUB dataset contains 200 classes and 11 788 images in
total. We used the splits from [4], where 100 classes are used for
training, 50 for validation, and 50 for testing.

5.1.2 Training and Test Setting. We evaluate our method on
5-way 1-shot and 5-way 5-shot settings. We train 50 000 episodes
in total for miniImageNet, 80 000 episodes for tieredImageNet and
40 000 episodes for CUB. During the test phase, 600 test episodes
are generated. We report the average accuracy as well as the corre-
sponding 95% confidence interval over these 600 episodes.

5.1.3 Class Name Embeddings. As baseline class name em-
bedding strategies, we used 300-dimensional FastText 1[2], GloVe
2 [32] and skip-gram embeddings3 [28]. For the BERT embed-
dings, we use the BERT-large-uncased model4, which yields 1024
dimensional vectors. To obtain the ncmask and ncnomask vectors, we
used the May 2016 dump of the English Wikipedia. In addition
to using the vectors ncmask (referred to as BERTmask) and ncnomask
(referred to as BERTnomask), we also experiment with the follow-
ing concatenations: ncmask ⊕ ncnomask (referred to as CON1) and
ncmask ⊕ ncnomask ⊕ ncglove (referred to as CON2).

5.1.4 Implementation Details. We have implemented5 our
model using the PyTorch-based framework provided by [4]. As
the backbone network for the visual feature embeddings, we used
ResNet-10 [13] for the ablation study in Section 5.2 and ResNet-12
and Conv-64 [40] for our comparison with the state-of-the-art in
Section 5.3. Conv-64 is the standard choice for CUB. It has four
layers with each layer consisting of a 3 × 3 convolution and fil-
ters, followed by batch normalization, a ReLU non-linearity, and
2 × 2 max-pooling. All experiments are trained from scratch us-
ing the Adam optimizer with an initial learning rate of 0.001. In

1https://fasttext.cc/docs/en/crawl-vectors.html
2https://nlp.stanford.edu/projects/glove/
3https://code.google.com/archive/p/word2vec/
4Available from https://github.com/huggingface/transformers
5Our implementation and pre-trained class name embeddings will be made available
upon acceptance.

https://fasttext.cc/docs/en/crawl-vectors.html
https://nlp.stanford.edu/projects/glove/
https://code.google.com/archive/p/word2vec/
https://github.com/huggingface/transformers

Aligning Visual Prototypes with BERT Embeddings for Few-Shot Learning Woodstock ’18, June 03–05, 2018, Woodstock, NY

Table 2: Comparison of the performance of different word em-
bedding models on miniImageNet, for the 5-way 5-shot setting
using the learned mapping network дψ .

Word Emb. tmax Accuracy

FastText 74.97 +- 0.65
GloVe 75.30 +- 0.61
Skip-gram 74.91 +- 0.66

BERTstatic 74.53 +- 0.67

BERTmask 16 75.47 +- 0.68
BERTmask 32 75.86 +- 0.61
BERTmask 64 76.30 +- 0.76
BERTmask 100 75.50 +- 0.63

BERTnomask 16 74.73 +- 0.66
BERTnomask 32 74.79 +- 0.67
BERTnomask 64 75.62 +- 0.65
BERTnomask 100 74.76 +- 0.69

experiments where the mapping network дψ is used, this network
is trained separately, with a learning rate of 0.0001. The remain-
ing parameters are selected based on the validation set. In particu-
lar, the coefficient λ is chosen from {1, 2, ..., 10}. For miniImageNet
and CUB, the optimal value was λ = 5; for tieredImageNet we ob-
tained λ = 6. We similarly select the type of class name embedding
from {BERTmask, CON1, CON2} and the number of dimensions
from {25, 50, 100, 200}. In all cases, we used the CCA+D method
for reducing the number of dimensions. For miniImageNet, 50-
dimensional CON2 was selected; for CUB, 50-dimensional CON1
was selected; for tieredImageNet, 100-dimensional CON2 was se-
lected.

5.2 Ablation Study
Our ablation study is based on the ProtoNet model. All experiments
in this section are conducted on miniImageNet using ResNet-10 as
the feature extractor.

5.2.1 Word Embedding Models. We first explore the im-
pact of the considered word embedding model. We found that the
BERT-based approach is sensitive to sentence segmentation errors.
To mitigate the impact of such errors, we only considered sen-
tences whose length is below a maximum of tmax word-piece to-
kens, where we considered values of tmax between 16 and 100.
The results are shown in Table 2, where we used the variant of
our model with the learned mapping network дψ for 5-way 5-shot
learning. The results show that BERTmask consistently outperforms
BERTunmask, while tmax = 64 achieves the best balance between
avoiding sentences with segmentation issues and removing too many
sentences. BERTmask performs consistently better than GloVe, which
achieves the best performance among the baseline models. The static
BERT input vectors (shown as BERTstatic) achieve the worst perfor-
mance overall. In the remainder of the experiments, we fix tmax =

64.

5.2.2 Correlation Exploration Module. We now analyze the
usefulness of the Correlation Exploration Module, comparing in

Table 3: Results for textual prototypes of different dimension-
ality on miniImageNet, for the 5-way 5-shot setting.

Dim CCA CCA+D

25 76.21 +- 0.62 75.99 +- 0.64
50 76.17 +- 0.67 76.40 +- 0.63

100 75.91 +- 0.66 76.32 +- 0.65
200 75.98 +- 0.68 76.17 +- 0.64

Table 4: Comparison of different alignment strategies on mini-
ImageNet, for the 5-way 5-shot setting, with d = 50.

Alignment Method Word Emb. Accuracy

дψ BERTmask 76.30 +- 0.76
дψ CON1 75.72 +- 0.60
дψ CON2 75.16 +- 0.79

CCA BERTmask 76.21 +- 0.62
CCA CON1 76.31 +- 0.67
CCA CON2 76.50 +- 0.62

CCA+D BERTmask 76.40 +- 0.63
CCA+D CON1 76.61 +- 0.65
CCA+D CON2 76.82 +- 0.64

particular the CCA and CCA+D alignment strategies. Note that
when the mapping network дψ is used we are forced to keep the di-
mensionality the same as that of the visual features (which is 512 in
the case of ResNet), whereas with the CCA-based alignment meth-
ods, we can use lower-dimensinal textual prototypes. Table 3 ex-
plores the effect of the dimensionality d of the textual prototypes.
The best results were found for d = 50. The results for d = 50 are
similar to the results we obtained with the mapping network дψ in
Table 2, with CCA+D performing slightly better and CCA perform-
ing slightly worse than BERTmask.

However, a key advantage of the CCA methods is that we can
further increase the dimensionality of the class name embeddings,
without increasing the number parameters of the classification model.
To further explore the potential of these alignment methods, Table
4 shows the results for different concatenations, each time keeping
the dimensionality of the textual prototypes fixed at d = 50. As can
be seen, when the mapping network дψ is used, these concatena-
tions degrade the performance, as the high dimensionality of the in-
put vectors leads to overfitting. In contrast, with CCA and CCA+D
we see some clear performance gains, where CCA+D again outper-
forms CCA. Among the different concatenation strategies, CON2
performs best.

5.2.3 Coefficient λ. The hyper-parameter λ controls the con-
tribution of the textual prototypes to the overall similarity computa-
tion. Figure 2 shows the impact of this coefficient on the accuracy
of the validation set from miniImageNet, where the BERTmask vec-
tors with the CCA+D alignment strategy were used. In this case, the
best results are found for λ = 5. Note that λ = 0 corresponds to the

Woodstock ’18, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

Figure 2: 5-way 5-shot accuracy with different λ values on the
miniImageNet validation dataset.

Table 5: Comparison with AM3 on miniImageNet (using
ResNet-12 in all cases), showing mean accuracies (%) with a
95% confidence interval.

5-way 1-shot setting:
Word Emb. Base Met. AM3 Ours

GloVe ProtoNet 62.43 ± 0.80 63.49 ± 0.67
BERT ProtoNet 62.11 ± 0.39 63.84 ± 0.32
CON1 ProtoNet 62.14 ± 0.41 64.13 ± 0.45
CON2 ProtoNet 62.03 ± 0.46 64.53 ± 0.37

5-way 5-shot setting:
Word Emb. Base Met. AM3 Ours

GloVe ProtoNet 74.87 ± 0.65 78.72 ± 0.64
BERTmask ProtoNet 74.72 ± 0.64 79.10 ± 0.63
CON1 ProtoNet 74.24 ± 0.68 79.26 ± 0.65
CON2 ProtoNet 74.09 ± 0.70 79.37 ± 0.64

standard ProtoNet model, which achieves the worst results within
the considered range of λ.

5.3 Experimental results
AM3 [53] and TRAML [22] are the most direct competitors of our
method, as these models also use class name embeddings. For this
reason, we first present a detailed comparison with these methods
in Section 5.3.1. Subsequently, in Section 5.3.2 we present a more
general comparison with the state-of-the-art in few-shot learning.

5.3.1 Comparison with AM3 and TRAML. The comparison
with AM3 can be found in Table 5, where we also show the impact
of different types of class name embeddings. As can be seen, our
proposed method outperforms AM3 in all cases, both in the 1-shot
and 5-shot setting. This confirms the usefulness of decoupling the

Table 6: Comparison with TRAML on miniImageNet (using
ResNet-12 in all cases), showing mean accuracies (%) with a
95% confidence interval.

5-way 1-shot setting:
Word Emb. Base Met. TRAML Ours

GloVe ProtoNet 60.31 ± 0.48 63.49 ± 0.67
GloVe AM3(ProtoNet) 67.10 ± 0.52 67.75 ± 0.39
CON2 AM3(ProtoNet) - 68.42 ± 0.51

5-way 5-shot setting:
Word Emb. Base Met. TRAML Ours

GloVe ProtoNet 77.94 ± 0.57 78.72 ± 0.64
GloVe AM3(ProtoNet) 79.54 ± 0.60 80.62 ± 0.76
CON2 AM3(ProtoNet) - 81.29 ± 0.59

visual and textual prototypes, as this is the key difference between
our model and AM3 when low-dimensional vectors, such as those
from the GloVe model, are used. Furthermore, we can see that AM3
is not able to take advantage of the higher-dimensional embeddings,
with the results for BERT, CON1 and CON2 all being worse than
those for GloVe. This can be explained from the observation that
these higher-dimensional class name embeddings result in a sub-
stantially higher number of parameters in the case of AM3, lead-
ing to overfitting. In contrast, thanks to the correlation exploration
module, our method can exploit the additional semantic informa-
tion that is encoded in the higher-dimensional embeddings without
introducing any additional parameters in the classification model.
In both the 1-shot and 5-shot settings, our model achieves the best
results with CON2 embeddings, which is in accordance with our
findings from Section 5.2.

Regarding the TRAML model, as we did not have access to the
source code, we only compare our method against the published
results from the original paper [22]. As the base method, they con-
sidered both ProtoNet and AM3. As can be seen in Table 6, our
method outperforms TRAML in both of these settings, for 1-shot
as well as 5-shot learning. This is even the case if GloVe vectors
are used for our model, although the best results are obtained when
using the CON2 embeddings for our model, while still using the
GloVe vectors for the AM3 base model.

5.3.2 Comparison with the State-of-the-Art. Tables 7, 8 and
9 compare our model with existing methods on the miniImageNet,
CUB and tieredImageNet datasets respectively, where miniImageNet
and tieredImageNet are standard benchmarks for few-shot learn-
ing. CUB, which consists of 200 bird classes, allows us to evaluate
the performance of our model on finer-grained classes. The perfor-
mance of all methods is generally impacted by the choice of the
backbone network. To allow for a fair comparison with different
published results from the literature, in the case of miniImageNet,
we show results of our model with ResNet-12 as the backbone,
where possible (i.e. unless no published results are available for
ResNet-12). The results of the baselines in Table 7 (miniImageNet)
are obtained from [22], [55], [38], [14] and [56]. The results for
the baselines in Table 8 (CUB) are obtained from [10], [24] and

Aligning Visual Prototypes with BERT Embeddings for Few-Shot Learning Woodstock ’18, June 03–05, 2018, Woodstock, NY

Table 7: The mean accuracies (%) with a 95% confidence interval on the miniImageNet dataset.

Method Backbone Type 5-way 1-shot 5-way 5-shot

MAML [7] Conv-64 Meta 48.70 ± 1.75 63.15 ± 0.91
Reptile [30] Conv-64 Meta 47.07 ± 0.26 62.74 ± 0.37
LEO [36] WRN-28 Meta 61.76 ± 0.08 77.59 ± 0.12
MTL [42] ResNet-12 Meta 61.20 ± 1.80 75.50 ± 0.80
MetaOptNet-SVM [21] ResNet-12 Meta 62.64 ± 0.61 78.63 ± 0.46

Matching Net [48] Conv-64 Metric 43.56 ± 0.84 55.31 ± 0.73
ProtoNet [40] Conv-64 Metric 49.42 ± 0.78 68.20 ± 0.66
RelationNet [43] Conv-64 Metric 50.44 ± 0.82 65.32 ± 0.70
ProtoNet [40] ResNet-12 Metric 56.52 ± 0.45 74.28 ± 0.20
TADAM [31] ResNet-12 Metric 58.50 ± 0.30 76.70 ± 0.38
Baseline++ [4] ResNet-18 Metric 51.87 ± 0.77 75.68 ± 0.63
SimpleShot [50] ResNet-18 Metric 62.85 ± 0.20 80.02 ± 0.14
CMT [23] ResNet-18 Metric 64.12 ± 0.82 80.51 ± 0.13
AM3(ProtoNet, GloVe) ResNet-12 Metric 62.43 ± 0.80 74.87 ± 0.65
AM3(ProtoNet++) [53] ResNet-12 Metric 65.21 ± 0.49 75.20 ± 0.36
TRAML(ProtoNet) [22] ResNet-12 Metric 60.31 ± 0.48 77.94 ± 0.57
CAN [14] ResNet-12 Metric 63.85 ± 0.48 79.44 ± 0.34
DSN-MR [38] ResNet-12 Metric 64.60 ± 0.48 79.51 ± 0.50
FEAT [55] ResNet-12 Metric 66.78 82.05
DeepEMD [56] ResNet-12 Metric 65.91 ± 0.82 82.41 ± 0.56

Ours(ProtoNet) ResNet-12 Metric 64.53 ± 0.37 79.37 ± 0.64
Ours(AM3,ProtoNet) ResNet-12 Metric 68.42 ± 0.51 81.29 ± 0.59
Ours(FEAT) ResNet-12 Metric 67.84 ± 0.45 83.17 ± 0.72
Ours(DeepEMD) ResNet-12 Metric 67.03 ± 0.79 83.68 ± 0.65

Table 8: The mean accuracies (%) with a 95% confidence inter-
val on the CUB dataset.

Method Backbone 5-way 1-shot 5-way 5-shot

MAML Conv-64 55.92 ± 0.95 72.09 ± 0.76
Matching Net Conv-64 61.16 ± 0.89 72.86 ± 0.70
ProtoNet Conv-64 51.31 ± 0.91 70.77 ± 0.69
RelationNet Conv-64 62.45 ± 0.98 76.11 ± 0.69
Baseline++ Conv-64 60.53 ± 0.83 79.34 ± 0.61
SAML [10] Conv-64 69.35 ± 0.22 81.37 ± 0.15
DN4 [24] Conv-64 53.15 ± 0.84 81.90 ± 0.60
AM3(ProtoNet) Conv-64 57.26 ± 0.66 71.34 ± 0.93
AM3(ProtoNet) [53] ResNet-12 73.6 79.9

Ours(ProtoNet) Conv-64 69.79 ± 0.73 83.06 ± 0.66
Ours(AM3,ProtoNet) Conv-64 72.14 ± 0.68 83.14 ± 0.69
Ours(ProtoNet) ResNet-12 76.58 ± 0.82 87.11 ± 0.71
Ours(AM3,ProtoNet) ResNet-12 77.03 ± 0.85 87.20 ± 0.70

[53]. These results are based on the Conv-64 and ResNet-12 back-
bone, which we therefore adopt as well for this dataset. The results
for tieredImageNet in Table 9 primarily rely on ResNet-12 as back-
bone, where the baseline results have been obtained from [55], [53],
[14] and [46]. Apart from changes to the backbone network, we also

vary the base method that is used as the visual classification com-
ponent of our model. We have used ProtoNet, AM3 (with ProtoNet
and GloVe vectors), FEAT and DeepEMD for this purpose.

The results in Table 7 show that when ProtoNet is used as the
base model, our method substantially outperforms the standard Pro-
toNet model, with the accuracy increasing from 56.52 to 64.53
in the 1-shot setting and from 74.28 to 79.37 in the 5-shot set-
ting. Similarly, when using AM3, FEAT and DeepEMD as the base
model, the results improve on the standard AM3, FEAT and Deep-
EMD models, respectively. The versions of our model with AM3
and DeepEMD also achieve the best overall results for the 1-shot
and 5-shot settings respectively. The results for CUB in Table 8
again show that our model is able to substantially outperform the
standard ProtoNet model. We also find that our model outperforms
AM3, with the best results obtained when combining our model
with AM3. In addition to the Conv-64 backbone, we have also in-
cluded results with ResNet-12 for our model and AM3, which con-
firm these conclusions. Finally, for the tieredImageNet results in
Table 9, we again see that our method consistently leads to improve-
ments of the base model. In particular, this is shown for four differ-
ent choices of the base model: ProtoNet, AM3, FEAT and Deep-
DEM. The version of our model that is based on DeepEMD leads
to the best results overall.

Woodstock ’18, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

Table 9: The mean accuracies (%) with a 95% confidence inter-
val on the tieredImageNet dataset.

Method Backbone 5-way 1-shot 5-way 5-shot

ProtoNet ResNet-12 53.31 ± 0.89 72.69 ± 0.74
RelationNet ResNet-12 54.48 ± 0.93 71.32 ± 0.78
MetaOptNet ResNet-12 65.99 ± 0.72 81.56 ± 0.63
CTM ResNet-18 68.41 ± 0.39 84.28 ± 1.73
SimpleShot ResNet-18 69.09 ± 0.22 84.58 ± 0.16
AM3(ProtoNet) ResNet-12 58.53 ± 0.46 72.92 ± 0.68
AM3(ProtoNet++) ResNet-12 67.23 ± 0.34 78.95 ± 0.22
CAN ResNet-12 69.89 ± 0.51 84.23 ± 0.37
FEAT ResNet-12 70.80 ± 0.23 84.79 ± 0.16
DeepEMD ResNet-12 71.16 ± 0.87 86.03 ± 0.58
Rethinking [46] ResNet-12 71.52 ± 0.69 86.03 ± 0.49

Ours(ProtoNet) ResNet-12 66.82 ± 0.65 78.97 ± 0.53
Ours(AM3,ProtoNet) ResNet-12 67.22 ± 0.43 79.08 ± 0.58
Ours(FEAT) ResNet-12 72.31 ± 0.68 85.76 ± 0.36
Ours(DeepEMD) ResNet-12 73.76 ± 0.72 87.51 ± 0.75

6 CONCLUSIONS
We have proposed a method to improve the performance of metric-
based FSL approaches by taking class names into account. Experi-
ments on three datasets show that our method consistently improves
the results of existing metric-based models. Moreover, our method
is conceptually simple and can easily be added to a wide range of
(existing and future) FSL models. An important advantage com-
pared to previous work on exploiting class name embeddings, such
as the AM3 method, is that we do not have to increase the number
of parameters of the classification model. This has allowed us to
exploit higher-dimensional class name embeddings. In particular,
we have used class name embeddings that were learned using the
BERT masked language model, as well as concatenations that com-
bine different types of embeddings. From a technical point of view,
our approach relies on two key insights. First, we found that de-
coupling the visual and textual prototypes is essential to achieving
good results. Second, to avoid the introduction of new parameters,
we rely on variants of canonical correlation analysis to align class
name embeddings with the corresponding visual prototypes.

A APPENDIX
We now explain in more detail how the matrices A and B are con-
structed. Let X0 and Y0 be the matrices whose ith row is, respec-
tively, the class name embedding and the visual prototype of the ith

class. The visual prototypes in Y0 are estimated by averaging the vi-
sual features fθ (x) of all images x from the training set that belong
to the ith class. These visual prototypes thus differ from those that
are used for training the main model, as they are estimated from the
full training set, rather than from a sampled episode.

As pointed out by [1], we can think of alignment methods such
as CCA as performing a sequence of linear transformation steps. In
particular, to find the matrices A and B, we can use the following
steps. The first transformation, called whitening, ensures that the
individual components of the vectors have unit variance and are

uncorrelated:

X1 = X0A1 Y1 = Y0B1

where

A1 = (X0
TX0)

1
2 B1 = (Y0T Y0)

1
2

The second transformation maps the two embedding spaces onto a
shared space using two orthogonal transformations A2 and B2. In
particular, let us write the singular value decomposition of X1

T Y1
as A2SBT2 . Then we have X2 = X1A2 and Y2 = Y1B2. If de-
whitening is used, the next transformation aims to restore the initial
variances and correlations, i.e. we have X3 = X2A3 and Y3 = Y2B3,
where:

A3 = A2
TA1

−1A2

B3 = B2T B1−1B2

The final step is dimensionality reduction. Let A4 be the mt × d
matrix whose ith row has a 1 in the ith column and 0s everywhere
else, and similar for themv × d matrix B4.

In summary, the transformation A of the class name embedding
space is given by A = A1A2A3A4 = A2A4 if de-whitening is used
and by A = A1A2A4 if standard CCA is used. Similarly, the trans-
formation B of visual prototype space is given by B = B1B2B3B4 =
B2B4 if de-whitening is used and by B = B1B2B4 otherwise.

REFERENCES
[1] Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018. Generalizing and Im-

proving Bilingual Word Embedding Mappings with a Multi-Step Framework of
Linear Transformations. In Proc. AAAI. 5012–5019.

[2] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017.
Enriching Word Vectors with Subword Information. Transactions of the Associ-
ation of Computational Linguistics 5, 1 (2017), 135–146.

[3] Long Chen, Hanwang Zhang, Jun Xiao, Wei Liu, and Shih-Fu Chang. 2018.
Zero-Shot Visual Recognition Using Semantics-Preserving Adversarial Embed-
ding Networks. In Proc. CVPR. 1043–1052.

[4] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin
Huang. 2019. A Closer Look at Few-shot Classification. In 7Proc. ICLR.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009.
Imagenet: A large-scale hierarchical image database. In Proc. CVPR. Ieee, 248–
255.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing. In Proc. NAACL-HLT.

[7] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. In Proc. ICML. 1126–1135.

[8] Andrea Frome, Gregory S. Corrado, Jonathon Shlens, Samy Bengio, Jeffrey
Dean, Marc’Aurelio Ranzato, and Tomas Mikolov. 2013. DeViSE: A Deep
Visual-Semantic Embedding Model. In Proc. NIPS. 2121–2129.

[9] Spyros Gidaris and Nikos Komodakis. 2018. Dynamic Few-Shot Visual Learning
Without Forgetting. In Proc. CVPR. 4367–4375.

[10] Fusheng Hao, Fengxiang He, Jun Cheng, Lei Wang, Jianzhong Cao, and Dacheng
Tao. 2019. Collect and Select: Semantic Alignment Metric Learning for Few-
Shot Learning. In Proceedings of the IEEE International Conference on Com-
puter Vision. 8460–8469.

[11] Bharath Hariharan and Ross Girshick. 2017. Low-shot visual recognition by
shrinking and hallucinating features. In Proc. ICCV. 3018–3027.

[12] Han He and Jinho Choi. 2020. Establishing strong baselines for the new decade:
Sequence tagging, syntactic and semantic parsing with BERT. In Proc. FLAIRS.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proc. CVPR. 770–778.

[14] Ruibing Hou, Hong Chang, Bingpeng Ma, Shiguang Shan, and Xilin Chen. 2019.
Cross Attention Network for Few-shot Classification. In Proc. NeurIPS. 4005–
4016.

[15] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
2017. Densely connected convolutional networks. In Proc. CVPR. 4700–4708.

[16] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In Proc. ICML.
448–456.

Aligning Visual Prototypes with BERT Embeddings for Few-Shot Learning Woodstock ’18, June 03–05, 2018, Woodstock, NY

[17] Jongmin Kim, Taesup Kim, Sungwoong Kim, and Chang D Yoo. 2019. Edge-
labeling graph neural network for few-shot learning. In Proc. CVPR. 11–20.

[18] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In Proc. ICLR.

[19] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. 2015. Siamese neural
networks for one-shot image recognition. In ICML Workshop, Vol. 2. Lille.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classi-
fication with deep convolutional neural networks. In Proc. NIPS. 1097–1105.

[21] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto.
2019. Meta-Learning With Differentiable Convex Optimization. In Proc. CVPR.
10657–10665.

[22] Aoxue Li, Weiran Huang, Xu Lan, Jiashi Feng, Zhenguo Li, and Liwei Wang.
2020. Boosting Few-Shot Learning With Adaptive Margin Loss. In Proc. CVPR.
12573–12581.

[23] Hongyang Li, David Eigen, Samuel Dodge, Matthew Zeiler, and Xiaogang Wang.
2019. Finding task-relevant features for few-shot learning by category traversal.
In Proc. CVPR. 1–10.

[24] Wenbin Li, Lei Wang, Jinglin Xu, Jing Huo, Yang Gao, and Jiebo Luo. 2019. Re-
visiting Local Descriptor Based Image-To-Class Measure for Few-Shot Learning.
In Proc. CVPR. 7260–7268.

[25] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. 2017. Meta-sgd: Learning
to learn quickly for few-shot learning. arXiv preprint arXiv:1707.09835 (2017).

[26] Yann Lifchitz, Yannis Avrithis, Sylvaine Picard, and Andrei Bursuc. 2019. Dense
Classification and Implanting for Few-Shot Learning. In Proc. CVPR. 9258–
9267.

[27] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. 2019. ViLBERT: Pre-
training Task-Agnostic Visiolinguistic Representations for Vision-and-Language
Tasks. In Proc. NeurIPS. 13–23.

[28] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[29] Sanath Narayan, Akshita Gupta, Fahad Shahbaz Khan, Cees G. M. Snoek, and
Ling Shao. 2020. Latent Embedding Feedback and Discriminative Features for
Zero-Shot Classification. In Proc. ECCV.

[30] Alex Nichol, Joshua Achiam, and John Schulman. 2018. On first-order meta-
learning algorithms. arXiv preprint arXiv:1803.02999 (2018).

[31] Boris N. Oreshkin, Pau Rodríguez López, and Alexandre Lacoste. 2018.
TADAM: Task dependent adaptive metric for improved few-shot learning. In
Proc. NIPS. 719–729.

[32] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global Vectors for Word Representation. In Proc. EMNLP. 1532–1543.

[33] Mohammad Taher Pilehvar and Jose Camacho-Collados. 2019. WiC: the Word-
in-Context Dataset for Evaluating Context-Sensitive Meaning Representations.
In Proc. NAACL-HLT. 1267–1273.

[34] Sachin Ravi and Hugo Larochelle. 2017. Optimization as a Model for Few-Shot
Learning. In Proc. ICLR.

[35] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky,
Joshua B. Tenenbaum, Hugo Larochelle, and Richard S. Zemel. 2018. Meta-
Learning for Semi-Supervised Few-Shot Classification. In Proc. ICLR.

[36] Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pas-
canu, Simon Osindero, and Raia Hadsell. 2019. Meta-Learning with Latent Em-
bedding Optimization. In Proc. ICLR.

[37] Victor Garcia Satorras and Joan Bruna Estrach. 2018. Few-Shot Learning with
Graph Neural Networks. In Proc. ICLR.

[38] Christian Simon, Piotr Koniusz, Richard Nock, and Mehrtash Harandi. 2020.
Adaptive Subspaces for Few-Shot Learning. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June
13-19, 2020. 4135–4144.

[39] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[40] Jake Snell, Kevin Swersky, and Richard S. Zemel. 2017. Prototypical Networks
for Few-shot Learning. In Proc. NIPS. 4077–4087.

[41] Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and Jifeng Dai.
2020. VL-BERT: Pre-training of Generic Visual-Linguistic Representations. In
Proc. ICLR.

[42] Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele. 2019. Meta-Transfer
Learning for Few-Shot Learning. In Proc. CVPR. 403–412.

[43] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M
Hospedales. 2018. Learning to compare: Relation network for few-shot learning.
In Proc. CVPR. 1199–1208.

[44] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. 2015. Going deeper with convolutions. In Proc. CVPR. 1–9.

[45] Hao Tan and Mohit Bansal. 2019. LXMERT: Learning Cross-Modality Encoder
Representations from Transformers. In Proc. EMNLP-IJCNLP. 5099–5110.

[46] Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B. Tenenbaum, and Phillip
Isola. 2020. Rethinking Few-Shot Image Classification: A Good Embedding is
All You Need?. In Proc. CVPR. 266–282.

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Proc. NIPS. 5998–6008.

[48] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray Kavukcuoglu, and Daan
Wierstra. 2016. Matching Networks for One Shot Learning. In Proc. NIPS. 3630–
3638.

[49] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. 2011. The Caltech-
UCSD Birds-200-2011 Dataset. Technical Report CNS-TR-2011-001. California
Institute of Technology.

[50] Yan Wang, Wei-Lun Chao, Kilian Q. Weinberger, and Laurens van der Maaten.
2019. SimpleShot: Revisiting Nearest-Neighbor Classification for Few-Shot
Learning. CoRR abs/1911.04623 (2019).

[51] Yu-Xiong Wang, Ross Girshick, Martial Hebert, and Bharath Hariharan. 2018.
Low-shot learning from imaginary data. In Proc. CVPR. 7278–7286.

[52] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. 2017.
Aggregated residual transformations for deep neural networks. In Proc. CVPR.
1492–1500.

[53] Chen Xing, Negar Rostamzadeh, Boris N. Oreshkin, and Pedro O. Pinheiro. 2019.
Adaptive Cross-Modal Few-shot Learning. In Proc. NIPS. 4848–4858.

[54] Shipeng Yan, Songyang Zhang, and Xuming He. 2019. A Dual Attention Net-
work with Semantic Embedding for Few-Shot Learning. In Proc. AAAI. 9079–
9086.

[55] Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. 2020. Few-Shot Learning
via Embedding Adaptation with Set-to-Set Functions. In Proc. CVPR.

[56] Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen. 2020. DeepEMD:
Few-Shot Image Classification With Differentiable Earth Mover’s Distance and
Structured Classifiers. In 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020. 12200–
12210.

[57] Li Zhang, Tao Xiang, and Shaogang Gong. 2017. Learning a Deep Embedding
Model for Zero-Shot Learning. In Proc. CVPR. 3010–3019.

[58] Ruixiang Zhang, Tong Che, Zoubin Ghahramani, Yoshua Bengio, and Yangqiu
Song. 2018. MetaGAN: An Adversarial Approach to Few-Shot Learning. In
Proc. NIPS. 2371–2380.

