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Abstract—With cutting edge scientific breakthroughs, 
human-centred algorithmic approaches have proliferated in 
recent years and information technology (IT) has begun to 
redesign socio-technical systems in the context of human-AI 
collaboration. As a result, distinct forms of interaction have 
emerged in tandem with the proliferation of infrastructures 
aiding interdisciplinary work practices and research teams. 
Concomitantly, large volumes of heterogeneous datasets are 
produced and consumed at a rapid pace across many scientific 
domains. This results in difficulties in the reliable analysis of 
scientific production since current tools and algorithms are not 
necessarily able to provide acceptable levels of accuracy when 
analyzing the content and impact of publication records from 
large continuous scientific data streams. On the other hand, 
humans cannot consider all the information available and may 
be adversely influenced by extraneous factors. Using this 
rationale, we propose an initial design of a human-AI enabled 
pipeline for performing scientometric analyses that exploits the 
intersection between human behavior and machine intelligence. 
The contribution is a model for incorporating central principles 
of human-machine symbiosis (HMS) into scientometric 
workflows, demonstrating how hybrid intelligence systems can 
drive and encapsulate the future of research evaluation. 
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I. INTRODUCTION 
Throughout the years, many scientometric analyses were 

carried out using diverse data sources and indicators for 
measuring scientific outputs at the micro, meso, and macro 
level. In principle, scientometrics is a field concerned with 
the quantitative study of research communication whose 
methods can be used for depicting and forecasting patterns of 
change in concepts, technologies, among many other relevant 
constructs and units of analysis [4]. The variety of works 
under this label range from investigations that focus on the 
assessment of the performance of authors and institutions 
[32], to the mapping of scientific mobility patterns [84] and 
international collaboration networks [35, 41], or even the 
contextual analysis of patents and research funding [29]. 
Traditionally, such kind of scientometric efforts result in 
cumulative characterizations of scientific advance, according 
to which novel methodologies should be deployed in order to 
capture the dynamic evolution of research activity [83]. This 
includes the interdisciplinary relations and interactions 
among knowledge branches and specialties as a foundation 
for further research and deliberation. 

From the standpoint of science mapping, depictions based 
on the evaluation of innovation-centered research outputs can 
help a variety of stakeholders that range from government 
science policymakers to heads of research centers, doctoral 
program applicants, thesis advisors, students, practitioners, as 
well as researchers seeking for external funding and/or to 
collaborate with new peers [1]. A lens into the framing of 
science mapping portrays it as an extremely difficult process 
that usually requires several software systems and toolkits to 
be used separately [51], which results in a lot of error-prone 
and redundant efforts when taking into account the increasing 
number of research papers being published in a regular basis. 

Despite the recent advances in computational approaches 
for discovering multi-level connections and relationships 
between entities through the incorporation of scientific 
workflows in scientometrics [5], there are many unknowns 
about how to further improve the functioning of advanced 
data analytical models while enabling machine learning (ML) 
algorithms to learn from human behavior for making better 
predictions [6]. This study contributes to this line of research 
by building off of the literature on HMS and scientometrics, 
with a convergence of paradigms that combines knowledge 
into a more seamless form through an integrated framework. 
Contrary to the conventional view of science mapping as an 
isolated activity, our work recognizes the role of large-scale 
collaboration and human-AI hybrid interaction for aiding the 
in-depth interpretation of scientific phenomena by using large 
sets of data to discover patterns and other useful information. 

In the ensuing sections of this work, we take initial steps 
towards this goal by first introducing some of the theoretical 
background upon which a HMS-based integration for science 
mapping purposes can be built, outlining in detail the use of 
scientific workflows. Following an overview of this paper’s 
related work in Section II, we proceed to examine the 
structural elements of an interdisciplinary workflow-centric 
approach for conducting scientometric analyses using human 
and machine intelligence in a symbiotic way. Section III also 
provides a brief comparison of extant tools for performing 
scientometric studies taking into consideration their levels of 
automatic and human support in each stage of the proposed 
workflow model. Furthermore, some scenarios are presented 
to demonstrate the characteristics and capabilities of this kind 
of approach through real-world use cases. In Section IV, we 
critically reflect on design considerations while discussing 
challenges that remain unsolved based on the limitations 
encountered. We close in Section V with some concluding 
remarks and suggest axes for further developments. 
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II. BACKGROUND AND RELATED RESEARCH 
Understanding scientific progress through multi-database 

scientometric analysis is a challenging task because of the 
difficulty in capturing complex nonlinear patterns from huge 
amounts of data and multidimensional perspectives [51, 83]. 
Consequent upon this, mapping the state-of-the-art of a field 
of research is even more difficult due to the wide spectrum of 
data sources. Recent advances in the field of scientometrics 
have been centered in the study of models for enhancing 
information retrieval (IR) search abilities in large document 
repositories [14], dynamic topic tracking [9], collaborative 
filtering-based recommendation from academic big data [37], 
semi-supervised topic clustering [8], among other promising 
targets. Based on the premise that the analysis errors from 
one step can propagate to later steps, scientometricians often 
face difficulties regularly reaching the best tools when 
performing tasks such as entity resolution, record linkage, 
and name disambiguation from bibliographic databases [28]. 
As science advances and becomes more data-intensive [85], 
research into solving complex problems and aiding scientific 
discovery by means of HMS is already underway. However, 
we currently lack a systematic approach that would aid 
researchers and developers during the process of designing 
scientometric workflows that will be enabled by a human-AI 
hybrid interaction paradigm [49] that leverages machine-
based automation and human intelligence at an individual or 
even crowd level into an integrated, co-evolving system. 

With few exceptions (see for example [13]), many aspects 
on the use of human-centered crowd studies have not been 
investigated intensively so far [19]. The depth and breadth of 
these studies are far beyond the traditional definition of 
crowdsourcing to include hybrid crowd-algorithm approaches 
for aiding research experiments [18]. That is, the widespread 
adoption of AI in recent years has opened up the possibility 
of developing sophisticated algorithms able to generate and 
derive intelligent insights and patterns while accelerating and 
amplifying the scientific discovery process from large-scale, 
heterogeneous datasets [86]. Complementarily, most studies 
agree on the use of crowds of experts and non-experts (i.e., 
amateur scientists, enthusiasts and volunteers’ communities) 
for improving algorithms [10], from simple training strategies 
to complex analysis of mass volumes of data records. In such 
settings, members of crowds and communities worldwide can 
contribute by fixing errors and/or providing observations on 
research domains where ML algorithms generally encounter 
problems due to their limited reasoning capabilities, inference 
errors, and dependency on the integrity of data [12, 19]. 

Researchers following this path have addressed the use of 
mixed-initiative systems as interactive forms of combining 
ML and large collections of individual contributions to the 
analysis of scientific literature [15]. As noted in [87], human 
and machine efforts can be combined into a hybrid workflow 
for improving the systematic literature review (SLR) process, 
from database searching to synthesis and reporting. A step in 
the direction of crowdsourcing citation screening processes 
has been done in some previous studies (e.g., [20, 88]), where 
they show how to leverage non-experts and expert crowd 
workers for supporting systematic and scoping reviews. 
Moreover, Zhao and Lee [82] proposed an alternative model 
to find answers from papers and thus improving academic 
search engines using natural language processing (NLP) and 

a collaborative annotation toolkit. This leads to a set of 
actionable insights for designing research-oriented systems 
able to looking for answers using scientific corpora. Further 
expanding the scope, Huang and colleagues [11] introduced 
the COVID-19 Research Aspect Dataset (CODA-19)1 as a 
human-annotated dataset created by crowd workers using text 
fragments of paper abstracts. From a theoretical point of 
view, some contributions (e.g., [6, 38]) have appeared in the 
literature taking into account the conceptual aspects behind 
the crowd’s ability to answer research questions as a socially-
distributed mode of scientific investigation. With the wider 
deployment of HMS-based inititives in the most diverse areas 
of science, it is expected that future developments will not be 
limited to the rigid boundaries placed around disciplines and 
specialties, but will also entail the wider diversity of skill sets 
required to support novel scientific claims through scalable 
models that can learn from crowd behavior. 

III. HUMAN-AI SCIENTOMETRIC WORKFLOW 
From data collection to consensus building, a scientific 

workflow involves several steps that can be automated based 
on the interactions among humans and machines. Yu and 
Buyya [21] have made the point that a scientific workflow “is 
concerned with the automation of scientific processes in 
which tasks are structured based on their control and data 
dependencies”. Thus, scientific tasks such as collecting and 
processing publication records can be connected taking into 
account their compositions and dependencies. In particular, it 
has been argued that scientific workflows enable users to 
delineate and carry out computational tasks on distributed 
resources through a high-level specification of processes [5]. 
Hence, we see a lot of possibilities for applying scientometric 
techniques as a way of representing dynamic relationships 
within scientific knowledge by building on the Small and 
Griffith’s [23] original framework for mapping the structural 
elements of scientific literature. 

Adding to this line of reasoning, we also draw inspiration 
from the work of Gil [24] who shed some light on the 
potential of enriching scientific workflows through robust 
mechanisms able “to validate and examine complex analysis 
processes and by automating important aspects of scientific 
exploration and discovery”. Here, the notion of symbiosis can 
be added as an extension to the classical workflow constructs 
[2]. Therefore, to further address this issue and explore the 
potential of this methodology, we propose a human-machine 
workflow-centric framework that directly learns the behavior 
of humans at a collective or individual scale to improve the 
inference mechanisms in complex scientometric tasks. This 
involves a relationship of co-dependence and cooperative 
functionality that we believe to be central to better understand 
the identity and evolution of disciplines and fields. 

A. Design and Analysis of Workflow Processes 
In general, the execution of a scientometric workflow 

involves a set of steps that span from data collection to data 
interpretation [25]. This leads to a number of dependencies 
and flows without which an analysis could not be run on a 
reliable manner. Such complex processes are demonstrated in 
our methodological framework proposal for hybrid human-
AI scientometric workflows, as depicted in Figure 1. 
                                                             
1 http://CODA-19.org   
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Figure 1.  Architecture diagram for the proposed hybrid human-algorithmic 
scientometric workflow model. 

The design of this workflow-based framework is inspired 
by the multi-step process of science mapping discussed in a 
variety of prior works (e.g., [25, 26, 33, 52]). Therefore, our 
proposed model is developed to support researchers during 
all the phases of a scientometric analysis while reducing their 
work burden through the incorporation of HMS features that 
allow machines and users to work closely, adapt to each other 
and cooperate efficiently [36]. It is also worth noting that the 
pipeline is being incorporated into a crowd-based system 
architecture [79] under development for aiding literature-
based discovery using hybrid algorithmic-crowdsourcing. 

1) Data Retrieval 
If we look to the literature, the basic process flow of a 

scientometric study starts by loading raw data from external 
sources such as Scopus and Web of Science, as noted in prior 
works [25, 26, 51, 62]. Such bibliographic data records can 
be stored in different formats. For instance, a user could be 
interested in retrieving data on funding schemes, citations, 
and patent activity over a specific time frame or geographical 
region. It is also worth noting that some scholars collect all 
these data manually, which is a very time-consuming and 
laborious process [32]. As a result, a user can only have 
access to a narrow view of the possible data sources. Among 
the aspects identified, we also stress the importance of study 
design in terms of methods and research questions before the 
workflow execution, as Zupic and Čater [33] put it in their 
work on the use of scientometric methods for mapping 
research domains and specialties. 

2) Preprocessing 
Scientific workflows intended to support scientometric 

studies usually comprise parallel processing of datasets. It is 
important to highlight that the quality of generated metadata 
is mostly associated with the digital libraries and repositories 
that build collections of publication records. Such metadata is 
often retrieved automatically with a lot of inconsistencies and 
ambiguity. We believe that efficiently fixing such problems 

can result in less biased analyses. In this regard, there is a 
need for noise reduction by detecting errors such as duplicate 
and misspelled entities in the preprocessing stage. As noted 
above, name ambiguity may affect the course of a science 
mapping analysis and resolving the issues experienced with 
imperfect data has been of great interest to the research 
community. In light of our previous experiences executing 
scientometric analyses, we suggest the adoption of a hybrid 
human-algorithmic approach to reduce errors that come from 
the automatic data retrieval. In other words, we believe that 
the inclusion of human-in-the-loop ML with iterative features 
during the preprocessing stage might improve the quality of 
inputs and thus prevent propagation of potentially erroneous 
data by correcting inaccuracies and optimizing the datasets 
from an early stage. 

3) Network Extraction 
A straightforward approach to measure possible relations 

and connections between units of analysis is to couple them 
into a network where the nodes represent entities like authors, 
documents, references, terms, etc. After retrieving connected 
components, it is possible to see an in-depth representation of 
the network structure and its dynamics. For example, we can 
generate a network that charaterize the attribute relatedness 
between co-authorship data and keywords using author-topic 
models [43]. In this sense, Cobo and co-authors [25] offer an 
overview of techniques commonly used to create networks, 
including co-occurrence, conceptual structures, coupling, and 
direct linkage. In line with the previous stage of the human-
AI scientometric workflow, the nodes and edges of a network 
could be edited at any moment using normalization features 
to remove unnecessary nodes and data links. 

4) Mapping 
With a focus on research in science mapping based on the 

quantitative study of knowledge production as measured by 
scientific outcomes, the field of scientometrics addresses 
issues involving associations among entities that are present 
within keyword collections, abstracts, full-texts, and citation 
data [51]. For a detailed view of extant methods for creating 
science maps, see [26]. Some techniques reported by authors 
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include multidimensional scaling, Eigenvalue/Eigenvector 
decomposition, factor analysis, and self-organizing maps. 
Therefore, clustering algorithms can be then used for splitting 
the entire network into subnetworks [25]. In such scenario, an 
algorithm is applied to the global network representing the 
edges, nodes and connections that exist between the units of 
analysis. Further expanding the scope, other techniques 
commonly adopted to support overlay maps include multiple 
correspondence analysis and Pathfinder network scaling. At 
this stage, the mapping is done on a general level through the 
use of automatic features. However, we believe that science 
maps could be annotated by users with additional information 
to aid navigation and information seeking behaviors. 

5) Analysis 
The classical and/or popular methods and techniques used 

for analyzing scientometric data include geospatial analysis, 
burst detection, temporal analysis, and network analysis [25]. 
In most scientometric toolkits, the analytical process is fully 
automated at this stage. In the face of the challenges usually 
reported by researchers when attempting to analyze such kind 
of publication records, some significant progresses have been 
accomplished in the ML and NLP research communities 
through the comparison of supervised and unsupervised 
classification models on large training datasets [40]. In this 
concern, there have been some works focusing on specific 
models for citation classification [80], technology and patent 
evolution analysis [42], and co-word analysis [39]. To our 
knowledge, however, there is little solid empirical evidence 
supporting crowdsourced assessment and validation of 
algorithmic decisions when capturing analytic processes in 
scientometric workflows. In such kind of hybrid settings, 
complex tasks such as characterizing the evolution of 
research fronts could be dynamically assigned to a crowd of 
human and AI workers [46] using adaptive strategies. 

6) Visualization 
Some previous work in the domain of literature-based 

discovery has drawn attention to the need of deploying novel 
forms of visualizing research outputs. When we look at the 
wide bibliographic collection of science mapping studies, we 
find several types of visualizations that range from interactive 
heatmaps showing funding sources of research [3] to tables 
and plots mapping co-authorship data and collaboration sub-
networks [47]. In order to design effectively at this level, we 
need to be able to develop robust techniques that should 
make the visual exploration experience much more appealing 
and interactive [81]. In our opinion, this is a critical aspect in 
the field of scientometrics, where there is a recurrent need for 
visualizing patterns, interact with the results, and easily 
navigate through multiple entities [52]. 

7) Interpretation 
Careful and appropriate interpretation of scientometric 

indicators and science maps is not a trivial task as it involves 
mapping potentially biased statistics. Using this rationale, the 
output of a scientometric analysis may only provide a limited 
view of the possible patterns and insights that could help 
achieve more informed policy development and decision‐
making while shedding additional light on the phenomenon 
under investigation. A crucial longer-term goal is to develop 
a human-AI scientometric approach where diverse kinds of 
research-oriented inputs (e.g., observations resulting from 

collective intelligence or crowdsourcing efforts) could be 
integrated into a single system. From a multidisciplinary 
perspective, we see a great potential for the use of HMS-
based initiatives for identifying previously unknown or 
uncharacterized patterns and bisociations [50] at the same 
time that we enhance the inference and reasoning abilities of 
algorithms when handling the difficulties of interpreting 
highly dynamic and complex scientometric data. In our 
opinion, a workflow-based framework combining human-AI 
collaboration strategies such as this may be further extended 
to various scientific areas, although more research is needed 
to substantiate the proposed benefits. 

B. Comparison of Science Mapping Approaches 
A variety of technological solutions have been proposed 

to overcome the obstacles of a science mapping study [48]. In 
order to assess the extent to which such extant approaches 
exhibit effective support at each stage, a feature analysis and 
comparison was conducted, elaborating on the criteria that a 
user or developer must consider in a scientometric study [25] 
from a socio-technical perspective that comprises human and 
automatic level support into an unified framework. Feature 
analysis can be understood as a well-established evaluation 
methodology in the field of software engineering. Marshall 
and co-authors [34] go even further by claiming that it is “a 
qualitative form of evaluation involving the subjective 
assessment of the relative importance of different features 
plus an assessment of how well each of the features is 
implemented by the candidate tools”. We derived major 
search terms from our study and manually searched Google 
Scholar and well-known bibliographic databases (i.e., IEEE 
Xplore Digital Library, ACM Digital Library, ScienceDirect, 
and SpringerLink) using a string formed by combining terms 
in the following Boolean expression: 

((“scientometrics” <or> “scientometric” <or> “bibliometrics” 
<or> “bibliometric” <or> “science mapping”) <and> (“feature 
analysis” <or> “comparative analysis” <or> “comparative study” 
<or> “comparison” <or> “review” <or> “analysis”) <or> (“tool” 
<or> “toolkit” <or> “toolset” <or> “software” <or> “application” 
<or> “technology” <or> “platform” <or> “system”)) 

The search string was customized taking into account the 
specificity of each database and then applied on titles and 
abstracts of the papers. From our analysis, we removed some 
non-specific science mapping software such as UCINET, 
Gephi, Pajek, GATE, and NodeXL following the criterion 
described in [25]. A total of 27 primary studies presenting 
details on the implementation of a science mapping system or 
toolkit were included for examination. Moreover, the first 
author of this paper conducted a manual verification of each 
feature by reading the selected studies and in some cases by 
testing the platform in order to obtain a concrete view of the 
system operating. 

Despite remarkable advances in visualizing patterns and 
trends in scientific literature, we can observe that the extant 
toolkits and software packages are not designed to allow 
collaboration between users. That is, current approaches are 
not conceived for supporting many users working together to 
provide valid interpretations while assisting the several steps 
of the overall process flow for mapping knowledge domains 
proposed by Börner [26]. As we show in our feature analysis 
and comparative study (see Table I), all candidate tools allow 
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retrieving data from bibliometric sources (e.g., Scopus) in 
different bibliographic data formats. As stated by Moral-
Muñoz [48], modular toolsets like the Science of Science 
(Sci2) Tool [59] also allow examining data from social media 
(i.e., Facebook) and funding sources. In this specific context, 
some studies (e.g., [32]) have explored the use of altmetrics 
as a reliable instrument for evaluating research coverage 
using indicators collected from the web, including article-
level metrics such as usage (e.g., downloads, full text views) 
and online sharing activity like mentions on social networks. 

TABLE I.  FEATURE ANALYSIS AND COMPARISON OF SCIENCE 
MAPPING TOOLKITS AND SOFTWARE PACKAGES ACCORDING TO THEIR 

DEGREE OF SUPPORT. 

Ref. S1a S2 S3 S4 S5 S6 S7 
[51] A A A A A A N 
[52] A AH A A A A N 
[53] A A N N A A N 
[54] A A A A A N N 
[55] A A A A A A N 
[56] A A N A A A N 
[57] A A A A A A N 
[58] A A A A A A N 
[59] A A A A A A N 
[60] A N A A A A N 
[61] A N N N A N N 
[62] A A A N N N N 
[63] A AH N N A A A 
[64] A N A N A N N 
[65] A AH A A A A N 
[66] A A N A A A N 
[67] A AH A A A A N 
[68] A A A A A A N 
[69] A N A A A A N 
[70] A H A A A N N 
[71] A N A A A A A 
[72] A N A A A N N 
[73] A N A A A A N 
[74] A N N N A N N 
[75] A A A A A A A 
[76] A N A A AH A N 
[77] A N A A A A N 

a Overall criteria of the qualitative assessment of science mapping tools organized by: 
(i) type of support: (A)utomatic, (H)uman, (C)rowd, and (N)ot supported; and (ii) stage of the 
scientometric workflow: (S1) data retrieval, (S2) preprocessing, (S3) network extraction, (S4) 

mapping, (S5) analysis, (S6) visualization, and (S7) interpretation. 

As it can be observed from Table I, most candidate tools 
do not incorporate human-in-the-loop ML into preprocessing 
modules. With rare exceptions, like SciMAT [52] and Sitkis 
[70], the user is not allowed to handle the data automatically 
retrieved from digital libraries and has to do this externally. 
Extrapolating to collaborative data acquisition, the majority 
of technical developments in science mapping do not include 
any specific features for supporting online users (crowds), 
though some attempts have been made in related fields (e.g., 
[16, 18]). That is, current science mapping toolkits are not 
designed for knowledge-intensive crowdsourcing tasks like 
generating new hypotheses, aggregating and processing 
interpretations of the analysis results, as well as explaining 
inconsistencies in the observed patterns and trends. On the 
basis of this comparative feature analysis, we believe that 
these interactions derived from the assessment of the science 
outputs using collaboration could enrich the data quality and 
thus provide unexplored interdisciplinary perspectives. 

C. Envisioned Scenarios 
To give an idea of possible application domains for our 

workflow-based pipeline, we present two potential scenarios 
where a user can be a requester and/or a contributor while 

being aided by crowd-algorithm collaboration in different 
kinds of research evaluation tasks. 

1) Scenario 1: Scientometrician using a crowd-powered 
mobile application 

Marcus, a scientometrician trained as a biologist and then 
as a computer scientist in the United States, has an interest in 
analyzing the evolution of the IEEE International Conference 
on Big Data from its first edition held in 2013 in Santa Clara, 
CA, USA. To this end he has first of all to familiarize himself 
with the entire corpus of publication records in this venue. By 
logging in to a mobile application (Figure 2), he finds the 
conference proceedings from 2013 onwards. It is a mobile 
version of SciCrowd [78], an interactive data exploration 
system that uses a crowd-based model for processing 
metadata extracted from digital libraries. Using this system, a 
user is not only an observer, but also a participant able to 
contribute for reducing database errors while providing 
knowledge and expertise about scientific phenomena. 

 
Figure 2.  Mobile interface of SciCrowd system’s prototype. 

After navigating through the environment, he picks up an 
active task and then he performs a series of subtasks related 
to named entity disambiguation in a domain-general dataset 
related to coronavirus disease. Once familiarized with the 
system, he selects an available option for creating a task 
which goal is to perform a scientometric analysis that will be 
crowdsourced to the entire pool of SciCrowd’s users 
regardless of the characteristics in their profile. While seeing 
the first contributions to the task, he feels committed and well 
connected to the other crowd members who are participating 
in his research initiative in a stigmergic way. 

2) Scenario 2: Iterative information seeking and quality 
control of bibliometric data through hybrid approaches 

Jessica is a second-year doctoral student in psychology 
aiming for a professional career as a lecturer in her 
university. She is currently performing a bibliometric 
mapping of the research literature in the area of ageism. At 
this point she is feeling difficulty to get proper sources for 
conducting her study. Using the web version of the SciCrowd 
system, she obtains a set of possible journals and conferences 
as a list of items containing detailed information about the 
topic under investigation as reported in each of these venues. 
Such sources are suggested by a recommender algorithm that 
uses combinations of contributions from crowd members and 
similar seeking behaviors as an input to justify and improve 
machine decisions. After selecting and storing the primary 
sources that are potentially relevant to her bibliometric study, 
she needs to clean the raw data extracted. Since the SciCrowd 
system relies on a hybrid model that learns from crowd inputs 
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over time, a set of possible errors are identified automatically, 
including duplicates and incomplete information. Through 
this HMS-based approach, Jessica is able to correct errors 
and fill the empty dataset in an iterative manner while 
contributing to validate inferences in further interactions. 

IV. DISCUSSION, CAVEATS AND PROSPECTS 
Inspired by the work of Börner [26], and the intersected 

boundaries of quantitative and qualitative methods in the 
field of scientometrics as discussed by Wyatt and co-authors 
[22], we devise a workflow combining automatic and human 
processes in a symbiotic fashion and continuously exchange 
to perform scientometric analyses. To improve the general 
process flow of science mapping for each stage, it is 
proposed that operations in three core steps (preprocessing, 
analysis, interpretation) be supplemented with HMS-based 
features. In line with this view, it is important to note the fact 
that the support for collaboration is quite limited in current 
tools, as also occurred in the field of evidence-based software 
engineering when considering the SLR process [34]. As 
Uhlmann and co-authors [38] have pointed out, claims of 
novelty in several fields of research can be complemented by 
diverse contributions provided by a large pool of contributors 
(experts and non-experts) working in scientific initiatives for 
solving difficult problems while increasing transparency and 
openness in various stages of the research process. 

Drawing on the notion that the use of human-in-the-loop 
ML may have possible effects on the performance of science 
tasks and thus minimize the impact of erroneous decisions, it 
has been noted that in some contexts developing ML models 
intended to support non-experts can be a challenging issue 
for software developers. That is, deploying such models 
involves highly specialized knowledge and there are some 
challenges that remain as active research topics such as the 
known barriers of entry in ML, transparency and algorithmic 
fairness [17], feedback and supervision [27], bias and quality 
control [45], inference and reasoning [44], and ethical risks 
[31] linked to the potential impacts of these technologies. 
Hence, when designing for tool support in crowd-assisted 
scientometrics, a prerequisite is to consider a better 
understanding of how humans interpret data and make 
decisions while providing explanations of ML algorithmic 
inferences in order to correctly prevent the effect of the 
actions through human-centred algorithmic models. 

Although crowdsourcing has not been addressed in the 
field of scientometrics extensively, a recent study [7] shows 
that its use can be particularly satisfactory in the context of 
scholarly article recommendation. As the number of papers 
continues to increase at an exponential rate, crowd-assisted 
scientometrics constitute a burgeoning approach in the sense 
that it can better inform algorithmic decision-making based 
on AI-and-crowdsourcing convergence [44]. In this context, 
resulting information from human-AI interactions could be 
visualized and further used for training ML algorithms while 
reducing the errors from automatic data collection. However, 
there are many challenges to developing workflows of this 
scale. As Gil and colleagues [30] noted in their study, two of 
the biggest requirements in scientific workflows are ensuring 
scalability and the “reproducibility of scientific analyses and 
processes”. In order to achieve this, the scientific data that is 
handled in the various stages of the science mapping process 

flow must be tracked and integrated appropriately for further 
reuse. Thus, it is worth noting the importance of standardized 
representations of data from several sources as a means of 
ensuring traceability and a structured analysis of quantitative 
insights and conceptual developments. 

V. CONCLUSIONS AND OUTLOOK 
This paper contributes to the positioning and definition of 

a scope for the integration of hybrid human-AI collaboration 
strategies into the design process of scientometric workflows. 
Thus, we believe that this study constitutes an initial roadmap 
to expand the research agenda in the fields of scientometrics 
and big data while building on the conceptual foundations of 
collaborative computing research taking into account both the 
social and technical aspects of crowd-algorithm collaboration 
for large-scale sensemaking and scientific mapping. With this 
in mind, we are able to trace the evolving transformations in 
scientific fields through tools that make it possible not only to 
navigate and understand the structure of scholarly knowledge 
but also act as digital observatories of human behavior at an 
individual or crowd level as opposed to the current solutions 
that are limited to a single-person expertise. In this regard, 
much can be learned from studying scientific practices in the 
context of collaborative human-machine efforts, and we also 
highlight that many more experiments are needed to unveil 
the independent effects of these technologies when seeking 
for novel insights, disciplinary interactions, potentially causal 
connections, and evolutionary impact assessments. 

ACKNOWLEDGEMENTS 
This work is financed by National Funds through the 

Portuguese funding agency, FCT - Fundação para a Ciência e 
a Tecnologia within project UIDB/50014/2020. 

REFERENCES 
[1] P. Savov, A. Jatowt, and R. Nielek, “Identifying breakthrough 

scientific papers,” Information Processing and Management, vol. 57, 
no. 2, 102168, 2020. 

[2] A. Dobrkovic, D. A. Döppner, M. E. Iacob, and J. van Hillegersberg, 
“Augmenting the evaluation and mapping of progress in scientific 
research – A human-machine symbiosis perspective,” in Proceedings 
of the International Conference on Intelligent Human Systems 
Integration, pp. 361-367, 2018. 

[3] M. C. Mills and C. Rahal, “A scientometric review of genome-wide 
association studies,” Commun. Biol., vol. 2, no. 1, pp. 1-11, 2019. 

[4] B. Y. Brusilovsky, “Partial and system forecasts in scientometrics,” 
Technological Forecasting and Social Change, vol. 12, nos. 2-3, pp. 
193-200, 1978. 

[5] A. T. Guler, C. J. Waaijer, and M. Palmblad, “Scientific workflows 
for bibliometrics,” Scientometrics, vol. 107, no. 2, pp. 385-398, 2016. 

[6] A. Correia, S. Jameel, D. Schneider, B. Fonseca, and H. Paredes, 
“Theoretical underpinnings and practical challenges of crowdsourcing 
as a mechanism for academic study,” in Proceedings of the Hawaii 
International Conference on System Sciences, pp. 4630-4639, 2020. 

[7] Y. Zhang, M. Wang, M. Saberi, and E. Chang, “Towards expert 
preference on academic article recommendation using bibliometric 
networks,” in Proceedings of the First International Workshop on 
Literature-Based Discovery, PAKDD, 2020. 

[8] Y. Zhou, H. Lin, Y. Liu, and W. Ding, “A novel method to identify 
emerging technologies using a semi-supervised topic clustering 
model: A case of 3D printing industry,” Scientometrics, vol. 120, no. 
1, pp. 167-185, 2019. 

[9] H. Liu, Z. Chen, J. Tang, Y. Zhou, and S. Liu, “Mapping the 
technology evolution path: A novel model for dynamic topic detection 
and tracking,” Scientometrics, pp. 1-48, 2020. 



2882

 
 

 
[10] J. Wang, Y. Wang, and Q. Lv, “Crowd-assisted machine learning: 

Current issues and future directions,” Computer, vol. 52, no. 1, pp. 46-
53, 2019. 

[11] T. H. K. Huang, C. Y. Huang, C. K. C. Ding, Y. C. Hsu, and C. L. 
Giles, “CODA-19: Reliably annotating research aspects on 10,000+ 
CORD-19 abstracts using non-expert crowd,” arXiv preprint 
arXiv:2005.02367, 2020. 

[12] J. Yang, T. Drake, A. Damianou, and Y. Maarek, “Leveraging 
crowdsourcing data for deep active learning an application: Learning 
intents in Alexa,” in Proceedings of the World Wide Web Conference, 
pp. 23-32, 2018. 

[13] U. Gadiraju, S. Möller, M. Nöllenburg, D. Saupe, S. Egger-Lampl, D. 
Archambault, and B. Fisher, “Crowdsourcing versus the laboratory: 
Towards human-centered experiments using the crowd,” in Evaluation 
in the Crowd. Crowdsourcing and Human-Centered Experiments, 
Springer, Cham, pp. 6-26, 2017. 

[14] I. Safder and S. U. Hassan, “Bibliometric-enhanced information 
retrieval: A novel deep feature engineering approach for algorithm 
searching from full-text publications,” Scientometrics, vol. 119, no. 1, 
pp. 257-277, 2019. 

[15] J. Chan, J. C. Chang, T. Hope, D. Shahaf, and A. Kittur, “SOLVENT: 
A mixed initiative system for finding analogies between research 
papers,” in Proceedings of the ACM on Human-Computer Interaction, 
2(CSCW), pp. 1-21, 2018. 

[16] E. Krivosheev, F. Casati, M. Baez, and B. Benatallah, “Combining 
crowd and machines for multi-predicate item screening,” in 
Proceedings of the ACM on Human-Computer Interaction, 2(CSCW), 
pp. 1-18, 2018. 

[17] G. Ramos, J. Suh, S. Ghorashi, C. Meek, R. Banks, S. Amershi, R. 
Fiebrink, A. Smith-Renner, and G. Bansal, “Emerging perspectives in 
human-centered machine learning,” in Extended Abstracts of the CHI 
Conference on Human Factors in Computing Systems, pp. 1-8, 2019. 

[18] Z. Dong, J. Lu, T. W. Ling, J. Fan, and Y. Chen, “Using hybrid 
algorithmic-crowdsourcing methods for academic knowledge 
acquisition,” Cluster Computing, vol. 20, no. 4, pp. 3629-3641, 2017. 

[19] A. Correia, D. Schneider, B. Fonseca, and H. Paredes, 
“Crowdsourcing and massively collaborative science: A systematic 
literature review and mapping study,” in Proceedings of the 
International Conference on Collaboration and Technology, pp. 133-
154, 2018. 

[20] N. Nama, M. Sampson, N. Barrowman, R. Sandarage, K. Menon, G. 
Macartney, K. Murto, J. P. Vaccani, S. Katz, R. Zemek, A. Nasr, and 
J. D. McNally, “Crowdsourcing the citation screening process for 
systematic reviews: Validation study,” Journal of Medical Internet 
Research, vol. 21, no. 4, e12953, 2019. 

[21] J. Yu and R. Buyya, “A taxonomy of scientific workflow systems for 
grid computing,” SIGMOD Record, vol. 34, no. 3, pp. 44-49, 2005. 

[22] S. Wyatt, S. Milojević, H. Park, and L. Leydesdorff, “Quantitative and 
qualitative STS: The intellectual and practical contributions of 
scientometrics,” SSRN Electronic Journal, 2588336, 2015. 

[23] H. Small and B. C. Griffith, “The structure of scientific literatures I: 
Identifying and graphing specialties,” Science Studies, vol. 4, no. 1, 
pp. 17-40, 1974. 

[24] Y. Gil, “From data to knowledge to discoveries: Artificial intelligence 
and scientific workflows,” Scientific Programming, vol. 17, no. 3, pp. 
231-246, 2009. 

[25] M. J. Cobo, A. G. López-Herrera, E. Herrera-Viedma, and F. Herrera, 
“Science mapping software tools: Review, analysis, and cooperative 
study among tools,” Journal of the American Society for Information 
Science and Technology, vol. 62, no. 7, pp. 1382-1402, 2011. 

[26] K. Börner, C. Chen, and K. W. Boyack, “Visualizing knowledge 
domains,” Annual Review of Information Science and Technology, 
vol. 37, no. 1, pp. 179-255, 2003. 

[27] D. Dellermann, A. Calma, N. Lipusch, T. Weber, S. Weigel, and P. 
Ebel, “The future of human-AI collaboration: A taxonomy of design 
knowledge for hybrid intelligence systems,” in Proceedings of the 
Hawaii International Conference on System Sciences, 2019. 

[28] I. Hussain and S. Asghar, “A survey of author name disambiguation 
techniques: 2010-2016,” Knowledge Engineering Review, vol. 32, e22, 
pp. 1-24, 2017. 

[29] L. Leydesdorff and C. Wagner, “Macro-level indicators of the 
relations between research funding and research output,” Journal of 
Informetrics, vol. 3, no. 4, pp. 353-362, 2009. 

[30] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon, C. 
Goble, M. Livny, L. Moreau, and J. Myers, “Examining the challenges 
of scientific workflows,” Computer, vol. 40, no. 12, pp. 24-32, 2007. 

[31] N. M. Barbosa and M. Chen, “Rehumanized crowdsourcing: A 
labeling framework addressing bias and ethics in machine learning,” 
in Proceedings of the CHI Conference on Human Factors in 
Computing Systems, pp. 1-12, 2019. 

[32] A. Correia, H. Paredes, and B. Fonseca, “Scientometric analysis of 
scientific publications in CSCW,” Scientometrics, vol. 114, no. 1, pp. 
31-89, 2018. 

[33] I. Župič and T. Čater, “Bibliometric methods in management and 
organization,” Organ. Res. Methods, vol. 18, no. 3, pp. 429-472, 2015. 

[34] C. Marshall, P. Brereton, and B. Kitchenham, “Tools to support 
systematic reviews in software engineering: A feature analysis,” in 
Proceedings of the International Conference on Evaluation and 
Assessment in Software Engineering, pp. 1-6, 2014. 

[35] S. Lee and B. Bozeman, “The impact of research collaboration on 
scientific productivity,” Social Studies of Science, vol. 35, no. 5, pp. 
673-702, 2005. 

[36] A. Endert, C. North, R. Chang, and M. Zhou, “Toward usable 
interactive analytics: Coupling cognition and computation,” in 
Proceedings of the ACM SIGKDD Workshop on Interactive Data 
Exploration and Analytics, pp. 52-56, 2014. 

[37] Q. Zhang, R. Mao, and R. Li, “Spatial-temporal restricted supervised 
learning for collaboration recommendation,” Scientometrics, vol. 119, 
no. 3, pp. 1497-1517, 2019. 

[38] E. L. Uhlmann, C. R. Ebersole, C. R. Chartier, T. M. Errington, M. C. 
Kidwell, C. K. Lai, R. J. McCarthy, A. Riegelman, R. Silberzahn, and 
B. A. Nosek, “Scientific utopia III: Crowdsourcing science,” 
Perspectives on Psychological Science, vol. 14, no. 5, pp. 711-733, 
2019. 

[39] X. Zhu and Y. Zhang, “Co-word analysis method based on meta-path 
of subject knowledge network,” Scientometrics, pp. 1-14, 2020. 

[40] Y. C. Goh, X. Q. Cai, W. Theseira, G. Ko, and K. A. Khor, 
“Evaluating human versus machine learning performance in 
classifying research abstracts,” Scientometrics, pp. 1-16, 2020. 

[41] A. Correia, S. Jameel, D. Schneider, B. Fonseca, and H. Paredes, “The 
effect of scientific collaboration on CSCW research: A scientometric 
study,” in Proceedings of the IEEE 23rd International Conference on 
Computer Supported Cooperative Work in Design, pp. 129-134, 2019. 

[42] A. J. Trappey, P. P. Chen, C. V. Trappey, and L. Ma, “A machine 
learning approach for solar power technology review and patent 
evolution analysis,” Applied Sciences, vol. 9, no. 7, 1478, 2019. 

[43] M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P. Smyth, “The author-
topic model for authors and documents,” in Proceedings of the 20th 
Conference on Uncertainty in Artificial Intelligence, pp. 487-494, 
2004. 

[44] A. Correia, H. Paredes, D. Schneider, S. Jameel, and B. Fonseca, 
“Towards hybrid crowd-AI centered systems: Developing an 
integrated framework from an empirical perspective,” in Proceedings 
of the IEEE International Conference on Systems, Man and 
Cybernetics, pp. 4013-4018, 2019. 

[45] F. Daniel, P. Kucherbaev, C. Cappiello, B. Benatallah, and M. 
Allahbakhsh, “Quality control in crowdsourcing: A survey of quality 
attributes, assessment techniques, and assurance actions,” ACM 
Computing Surveys, vol. 51, no. 1, pp. 1-40, 2018. 

[46] M. Kobayashi, K. Wakabayashi, and A. Morishima, “Quality-aware 
dynamic task assignment in human+AI crowd,” in Companion 
Proceedings of the Web Conference, pp. 118-119, 2020. 

[47] H. Hou, H. Kretschmer, and Z. Liu, “The structure of scientific 
collaboration networks in Scientometrics,” Scientometrics, vol. 75, no. 
2, pp. 189-202, 2008. 

[48] J. A. Moral-Muñoz, E. Herrera-Viedma, A. Santisteban-Espejo, and 
M. J. Cobo, “Software tools for conducting bibliometric analysis in 
science: An up-to-date review,” EPI International Journal of 
Information and Communication, vol. 29, no. 1, pp. 1-20, 2020. 



2883

[49] A. Correia, S. Jameel, H. Paredes, B. Fonseca, and D. Schneider, 
“Hybrid machine-crowd interaction for handling complexity: Steps 
toward a scaffolding design framework,” in Macrotask 
Crowdsourcing, Springer, Cham, pp. 149-161, 2019. 

[50] C. Loglisci and M. Ceci, “Discovering temporal bisociations for 
linking concepts over time,” in Proceedings of the Joint European 
Conference on Machine Learning and Knowledge Discovery in 
Databases, pp. 358-373, 2011. 

[51] M. Aria and C. Cuccurullo, “bibliometrix: An R-tool for 
comprehensive science mapping analysis,” Journal of Informetrics, 
vol. 11, no. 4, pp. 959-975, 2017. 

[52] M. J. Cobo, A. G. López-Herrera, E. Herrera-Viedma, and F. Herrera, 
“SciMAT: A new science mapping analysis software tool,” Journal of 
the Association for Information Science and Technology, vol. 63, no. 
8, pp. 1609-1630, 2012. 

[53] J. Ruiz-Rosero, G. Ramirez-Gonzalez, and J. Viveros-Delgado, 
“Software survey: ScientoPy, a scientometric tool for topics trend 
analysis in scientific publications,” Scientometrics, vol. 121, no. 2, pp. 
1165-1188, 2019. 

[54] O. Persson, R. Danell, and J. W. Schneider, “How to use Bibexcel for 
various types of bibliometric analysis,” Celebrating Scholarly 
Communication Studies: A Festschrift for Olle Persson at his 60th 
Birthday, vol. 5, pp. 9-24, 2009. 

[55] S. Grauwin and P. Jensen, “Mapping scientific institutions,” 
Scientometrics, vol. 89, no. 3, pp. 943-954, 2011. 

[56] A. Thor, W. Marx, L. Leydesdorff, and L. Bornmann, “Introducing 
CitedReferencesExplorer (CRExplorer): A program for reference 
publication year spectroscopy with cited references standardization,” 
Journal of Informetrics, vol. 10, no. 2, pp. 503-515, 2016. 

[57] N. J. van Eck and L. Waltman, “CitNetExplorer: A new software tool 
for analyzing and visualizing citation networks,” Journal of 
Informetrics, vol. 8, no. 4, pp. 802-823, 2014. 

[58] C. Chen, “CiteSpace II: Detecting and visualizing emerging trends and 
transient patterns in scientific literature,” Journal of the Association 
for Information Science and Technology, vol. 57, no. 3, pp. 359-377, 
2006. 

[59] K. Börner, “Science of science studies: Sci2 Tool,” Communications 
of the ACM, vol. 54, no. 3, pp. 60-69, 2011. 

[60] N. J. van Eck and L. Waltman, “Software survey: VOSviewer, a 
computer program for bibliometric mapping,” Scientometrics, vol. 84, 
no. 2, pp. 523-538, 2010. 

[61] A. W. K. Harzing and R. Van der Wal, “Google Scholar as a new 
source for citation analysis,” Ethics in Science and Environmental 
Politics, vol. 8, no. 1, pp. 61-73, 2008. 

[62] J. McLevey and R. McIlroy-Young, “Introducing metaknowledge: 
Software for computational research in information science, network 
analysis, and science of science,” Journal of Informetrics, vol. 11, no. 
1, pp. 176-197, 2017. 

[63] M. Gagolewski, “Bibliometric impact assessment with R and the 
CITAN package,” Journal of Informetrics, vol. 5, no. 4, pp. 678-692, 
2011. 

[64] A. Uddin, J. Bhoosreddy, M. Tiwari, and V. K. Singh, “A Sciento-text 
framework to characterize research strength of institutions at fine-
grained thematic area level,” Scientometrics, vol. 106, no. 3, pp. 1135-
1150, 2016. 

[65] R. Bailón-Moreno, E. Jurado-Alameda, R. Ruiz-Baños, and J. P. 
Courtial, “Analysis of the field of physical chemistry of surfactants 
with the Unified Scientometric Model. Fit of relational and activity 
indicators,” Scientometrics, vol. 63, no. 2, pp. 259-276, 2005. 

[66] J. A. Wise, “The ecological approach to text visualization,” Journal of 
the Association for Information Science and Technology, vol. 50, no. 
13, pp. 1224-1233, 1999. 

[67] A. L. Porter and S. W. Cunningham, “Tech mining: Exploiting new 
technologies for competitive advantage,” John Wiley & Sons, 2004. 

[68] K. Börner, W. Huang, M. Linnemeier, R. Duhon, P. Phillips, N. Ma, 
A. Zoss, H. Guo, and M. Price, “Rete-netzwerk-red: Analyzing and 
visualizing scholarly networks using the Network Workbench Tool,” 
Scientometrics, vol. 83, no. 3, pp. 863-876, 2010. 

[69] E. Garfield and A. I. Pudovkin, “The HistCite system for mapping and 
bibliometric analysis of the output of searches using the ISI Web of 

Knowledge,” in Proceedings of the Annual Meeting of the American 
Society for Information Science and Technology, vol. 83, 2004. 

[70] H. A. Schildt, “Sitkis: Software for bibliometric data management and 
analysis,” Helsinki: Institute of Strategy and International Business, 6, 
1, 2002. 

[71] R. Dresbeck, “SciVal,” Journal of the Medical Library Association, 
vol. 103, no. 3, 164, 2015. 

[72] Y. H. Tseng and M. Y. Tsay, “Journal clustering of library and 
information science for subfield delineation using the bibliometric 
analysis toolkit: CATAR,” Scientometrics, vol. 95, no. 2, pp. 503-528, 
2013. 

[73] J. A. Comins and L. Leydesdorff, “RPYS i/o: Software demonstration 
of a web-based tool for the historiography and visualization of citation 
classics, sleeping beauties and research fronts,” Scientometrics, vol. 
107, no. 3, pp. 1509-1517, 2016. 

[74] E. Siniksaran and M. H. Satman, “WURS: A simulation software for 
university rankings – Software review,” Scientometrics, vol. 122, no. 
1, pp. 701-717, 2020. 

[75] V. Frehe, V. Rugaitis, and F. Teuteberg, “Scientometrics: How to 
perform a big data trend analysis with ScienceMiner,” Informatik, pp. 
1699-1710, 2014. 

[76] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. 
Ramage, N. Amin, B. Schwikowski, and T. Ideker, “Cytoscape: A 
software environment for integrated models of biomolecular 
interaction networks,” Genome Research, vol. 13, no. 11, pp. 2498-
2504, 2003. 

[77] Y. Liu and M. Li, “BibeR: A web-based tool for bibliometric analysis 
in scientific literature,” PeerJ PrePrints, 4, e1879v1, 2016. 

[78] A. Correia, D. Schneider, H. Paredes, and B. Fonseca, “SciCrowd: 
Towards a hybrid, crowd-computing system for supporting research 
groups in academic settings,” in Proceedings of the International 
Conference on Collaboration and Technology, pp. 34-41, 2018. 

[79] A. Correia, B. Fonseca, H. Paredes, D. Schneider, and S. Jameel, 
“Development of a crowd-powered system architecture for knowledge 
discovery in scientific domains,” in Proceedings of the IEEE 
International Conference on Systems, Man and Cybernetics, pp. 1372-
1377, 2019. 

[80] S. Rahi, I. Safder, S. Iqbal, S. U. Hassan, I. Reid, and R. Nawaz, 
“Citation classification using natural language processing and machine 
learning models,” in Proc. of the International Conference on Smart 
Information and Communication Technologies, pp. 357-365, 2019. 

[81] M. Thilakaratne, K. Falkner, and T. Atapattu, “A systematic review on 
literature-based discovery workflow,” PeerJ Computer Science, 5, 
e235, 2019. 

[82] T. Zhao and K. Lee, “Talk to Papers: Bringing neural question 
answering to academic search,” in Proceedings of the 58th Annual 
Meeting of the Association for Computational Linguistics: System 
Demonstrations, 2020. 

[83] A. Correia, B. Fonseca, and H. Paredes, “Exploiting classical 
bibliometrics of CSCW: Classification, evaluation, limitations, and the 
odds of semantic analytics,” in Proceedings of the International 
Conference on Human Factors in Computing and Informatics, pp. 
137-156, 2013. 

[84] K. Jonkers and L. Cruz-Castro, “Research upon return: The effect of 
international mobility on scientific ties, production and impact,” 
Research Policy, vol. 42, no. 8, pp. 1366-1377, 2013. 

[85] S. S. Feger, P. W. Wozniak, L. Lischke, and A. Schmidt, “‘Yes, I 
comply!’ Motivations and practices around research data management 
and reuse across scientific fields,” in Proceedings of the ACM on 
Human-Computer Interaction, 4(CSCW), pp. 1-26, 2020. 

[86] Y. Gil, M. Greaves, J. Hendler, and H. Hirsh, “Amplify scientific 
discovery with artificial intelligence,” Science, vol. 346, no. 6206, pp. 
171-172, 2014. 

[87] J. Thomas, A. Noel-Storr, I. Marshall, B. Wallace, S. McDonald, C. 
Mavergames, P. Glasziou, I. Shemilt, A. Synnot, T. Turner, and J. 
Elliott, “Living systematic reviews: 2. Combining human and machine 
effort,” Journal of Clinical Epidemiology, vol. 91, pp. 31-37, 2017. 

[88] M. L. Mortensen, G. P. Adam, T. A. Trikalinos, T. Kraska, and B. C. 
Wallace, “An exploration of crowdsourcing citation screening for 
systematic reviews,” Res. Synth. Methods, vol. 8, no. 3, pp. 366-386. 


