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ABSTRACT
Advertising is critical to many online e-commerce platforms such as
e-Bay and Amazon. One of the important signals that these platforms
rely upon is the click-through rate (CTR) prediction. The recent pop-
ularity of multi-modal sharing platforms such as TikTok has led to
an increased interest in online micro-videos. It is, therefore, useful
to consider micro-videos to help a merchant target micro-video ad-
vertising better and find users’ favourites to enhance user experience.
Existing works on CTR prediction largely exploit unimodal content
to learn item representations. A relatively minimal effort has been
made to leverage multi-modal information exchange among users
and items. We propose a model to exploit the temporal user-item
interactions to guide the representation learning with multi-modal
features, and further predict the user click rate of the micro-video
item. We design a Hypergraph Click-Through Rate prediction frame-
work (HyperCTR) built upon the hyperedge notion of hypergraph
neural networks, which can yield modal-specific representations
of users and micro-videos to better capture user preferences. We
construct a time-aware user-item bipartite network with multi-modal
information and enrich the representation of each user and item with
the generated interests-based user hypergraph and item hypergraph.
Through extensive experiments on three public datasets, we demon-
strate that our proposed model significantly outperforms various
state-of-the-art methods.

1 INTRODUCTION
Click-Through Rate (CTR) prediction has become one of the core
components of modern advertising on many e-commerce platforms.
The goal is to predict customers’ click probability on wide range of
items. Existing works on CTR prediction only focus on modeling
pairwise interactions from uni-modal features which might not lead
to satisfactory results. This existing gap leads to new opportunities
where we can exploit the widely available multi-modal features
which is largely unexplored. Besides, they can given complemen-
tary information to the model which alone cannot be obtained via
uni-modal modeling. AutoFIS [19] and UBR4CTR [26] are recent
Factorization Machine (FM) [31] based models with multi-layer
perceptron (MLP) which mainly utilize user-item interactions fea-
tures. To supplement the lack of additional information, deep neural
networks (DNNs) are also explored with automated feature engi-
neering. For example, DSTN [24] leverages DNNs-based method
to fuse additional auxiliary data and item information to further
uncover hidden information. Although these representative works
have achieved good performance, there are still limited exploration
on modeling multi-modal features and how they could contribute
towards the model performance.

Recently, the wide-spreading influence of micro-video sharing
platforms, e.g., Tiktok 1 and Kuaishou 2 make them a popular plat-
form for socialising, sharing and advertising as micro-videos. These
videos are compact and come with rich multimedia content from

1https://www.tiktok.com/
2https://www.kuaishou.com/
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Figure 1: An illustration of multi-modal user preferences.

multiple modalities, i.e., textual, visual, as well as acoustic informa-
tion. Motivated by this, we propose a novel method which addresses
the limitations in current methods and improve CTR prediction per-
formance through micro-videos. However, modeling multi-modal
features extracted from micro-videos for CTR prediction in a holis-
tic way is not straightforward. First, in a typical setting of CTR
prediction, the interactions between users and items are normally
sparse, and the sparsity issue becomes even more severe (in magni-
tude of number of modalities) when taking into account multi-modal
features. For example, compared to uni-modal feature space, the
sparsity of a dataset is tripled when considering visual, acoustic
and text features of a target item. Therefore, effectively mitigating
the sparsity issues introduced by multi-modal features without com-
promising upon the performance of the model is the key to this
problem.

We rely on hypergraphs to address some of the challenges. Hyper-
graph [3] extends the concept of an edge in a graph and can connect
more than two nodes. Inspired by the flexibility and expressiveness
of hypergraphs, we use the concept to multi-modal feature modeling,
and propose a new model based on modality-originated hypergraphs
by which the sparsity issues between users and items under each
modality can be alleviated. Figure 1 is an example of the proposed
modality-originated hypergraphs, where user 𝑢1 and user 𝑢2 both
have interactions with multiple micro-videos, e.g., 𝑖1 and 𝑖2, in which
each hyperedge can connect multiple item nodes on a single edge.
Compared with a simple graph on which the degree of all edges is set
to be 2, a hypergraph can encode high-order data correlation (beyond
pairwise connections) using its degree-free hyperedges. Different
from various modalities, we incorporate different multi-modal infor-
mation, e.g., frames, acoustic, textual into user-item hypergraphs to
help establish an in-depth understanding of user preferences. The
reason for considering using hypergraphs in our work is due to the
purpose of building modality-originated hypergraphs which can be
treated as data argumentation technique.

We also construct hypergraphs considering both user and item.
In Figure 1, user 𝑢1 cares more about frames of micro-video 𝑖2,
whereas user 𝑢2 might be fond of the text content. Hence, different
users might have different tastes on modalities of a micro-video. A



Figure 2: Illustration of user 𝑢1’s historical view records with
micro-videos, which reflects the user’s global view interests.

group of users𝑢3, 𝑢4 and𝑢5 click micro-video 𝑖2 due to the intriguing
sound tracks. Such signals can be utilized to construct a group-aware
hypergraph which is comprised of multiple users who share the
same interest for the item. Inspired by the recent success of self-
supervised learning (SSL) [20], we utilize the mutual information
maximization principle to learn the intrinsic data correlation [40] to
help construct the interests-based hypergraph where we represent a
group of users with common preference on modal-specific content.
Hence, in each modality (e.g., visual), we aggregate information
from the group-aware hypergraph and incorporate them into user
representations. According to group-aware hypergraph, each user
has interactions with one of the item’s modalities, while different
items can be interacted with the same user. For example, user 𝑢1
likes 𝑖1’s frames, and 𝑢1 will pay more attention to the visual-aspect
of other items. Under such circumstances, we can also construct a
homogeneous item-level hypergraph comprising of multiple items
who have certain potential modality that appeal to the same user.

Generally, user preference evolves over time, and it is hence a
sequential phenomenon. As shown in Figure 2, user 𝑢1 has watched
swimming and cartoon videos at timestamp 𝑁 , indicating that the
user has two very different interests and we cannot capture the
user’s interests at the single time point. If at a new timestamp 𝑁 + 1,
basketball, football, dance and fitness videos have selected by the
same user. Then, we can infer that this user has more interests in
sports than comedy. Under such circumstances, some researches
consider users’ interest as dynamic when designing CTR systems
and have better model users’ interest such as THACIL [4]. Therefore,
more user-behavior modeling methods are proposed for tacking
this problem. There are RNN-based models [13, 17], CNN-based
models [33], transformer-based models [25] and memory network-
based models [7].

To tackle the aforementioned problem, we propose HyperCTR, a
novel temporal framework with user and item level hypergraphs to
enhance CTR prediction. To explore the sequential correlations at
different time slots, HyperCTR truncates the user interactions based
on the timestamp to construct a series of hypergraphs. With a hy-
pergraph convolutional network (HGCN), HyperCTR can aggregate
the correlated users and items with direct or high-order connections
to generate the dynamic embedding at each time slot. With change
happening both over time and across users, the temporal and group-
aware user embeddings is fed into a fusion layer to generate the final
user representation. The prediction of an unseen interaction can be
calculated as probability between the user and micro-video repre-
sentations after MLP. We show the effectiveness of our framework
on three publicly available datasets – Kuaishou, Micro-Video 1.7M
(MV1.7M) and MovieLens. Our key contributions are: 1) We study
the dynamics of user preference from two perspectives - time-aware

and group-aware - and uncover the importance in exploiting the
information interchange on various modalities to reflect user inter-
ests and affect CTR performance. 2) We propose a novel method
HyperCTR framework with two types of modality-originated hy-
pergraphs to generate users and items embeddings. Three of the
unique aspects of the framework are a self-attention layer to cap-
ture the dynamic pattern in user-item bipartite interaction networks,
a fusion layer to encode each interaction with both the temporal
individual embeddings and group-level embeddings for final user
pattern modeling and the CTR probability will be calculated by a
MLP layer with the input of user- and item-level embeddings. 3)
Extensive experiments on three public datasets demonstrate that our
proposed model outperforms several state-of-the-art models. Due
to anonymous requirements, the code link is invisible until paper
acceptance.

2 OUR NOVEL HYPERCTR MODEL
In this section, we present our novel click-through rate prediction
framework with multi-modal hypergraphs.

2.1 Preliminaries
Our goal is learning user preferences from the hypergraph structure
and predicting the probability that a user clicks the recommended
entities. We denote 𝑈 to represent the set of users and 𝐼 represents
the set of 𝑃 items in an online platform. The item is characterised by
various modalities, which are visual, acoustic, and textual. We also
have historical interactions, such as “view”, “like”, “follow” and
“click” between users and items. We represent this interaction as a
hypergraph G(𝑢, 𝑖), where 𝑢 ∈ 𝑈 and 𝑖 ∈ 𝐼 separately denote the
user and item sets. A hyperedge, E(𝑢, 𝑖1, 𝑖2, 𝑖3, ..., 𝑖𝑛) indicates an ob-
served interaction between user 𝑢 and multiple items (𝑖1, 𝑖2, 𝑖3, ..., 𝑖𝑛)
where hyperedge is assigned with a weight by W, a diagonal matrix
of edge weights. We also have multi-modal information associated
with each item, such as visual, acoustic and textual features. For
instance, we denote 𝑀 = {𝑣, 𝑎, 𝑥} as the multi-modal tuple, where
𝑣 , 𝑎, and 𝑥 represent the visual, acoustic, and textual modalities,
respectively.

Our hypothesis is that user preference also plays an important
role. A user group 𝑦 is associated with a user set 𝐶𝑦 ∈ 𝑈 which
can be used to represent a 𝑁 -dimensional group-aware embedding.
The member of groups might change over time. For each user 𝑢, we
denote the user’s temporal behavior as 𝐵𝑐𝑢 responding to the current
time, and sequential view user behavior as 𝐵𝑠𝑢 according to a time
slot. We further utilize K(𝐵𝑐𝑢 ) and K(𝐵𝑠𝑢 ) to represent the set of
items in the sequential behavior, respectively.

We explain some important terminologies below which will help
build a foundation to understand the technical merits of our work
which includes temporal user-item interaction representation, group-
aware hypergraph and item hypergraphs.

• Definition 1 (Temporal User-item Interaction Representation)
Let a sequence S(𝑢, 𝑖1, 𝑖2, 𝑖3, ...) indicate an observed interac-
tion between user 𝑢 and multiple items (𝑖1, 𝑖2, 𝑖3, ...) occurring
during a time slot 𝑡𝑛 . We denote E𝐼 = [e1, e2, ...] as the set
of items’ static latent embeddings, which represent the set of
items a user interacts with during this time slot. Each item
in current sequence is associated with multi-modal features,
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which utilize𝑀𝑖𝑛 and it contains three-fold information about
visual, acoustic and textual, denoted as 𝑣𝑖𝑛 , 𝑎𝑖𝑛 and 𝑥𝑖𝑛 , re-
spectively.

• Definition 2 (Group-aware Multi-Modal Hypergraph)
Let G𝑡𝑛𝑔 represent a hypergraph associated with 𝑖-th item
at time slot 𝑡𝑛 . G𝑡𝑛𝑔 = {𝑉 𝑡𝑛𝑔 , E𝑡𝑛𝑔 ,W𝑡𝑛

𝑔 ,H
𝑡𝑛
𝑔 } is constructed

based on the whole user-item interactions with multi-modal
information. 𝑉 𝑡𝑛𝑔 represents the nodes of individual and the
correlated item in G𝑡𝑛𝑔 , E𝑡𝑛𝑔 denoted as a set of hyperedges.
We are thus creating a link to users who have interactions
with multiple modal list of items. Each G𝑡𝑛𝑔 is associated with
an incidence matrix H𝑡𝑛𝑔 and it is also associated with a matrix
W𝑡𝑛
𝑔 , which is a diagonal matrix representing the weight of

the hyperedge E𝑡𝑛𝑔 .
• Definition 3 (Item Homogeneous Hypergraph)

There are three hyperedges in each G𝑡𝑛𝑔 , which was defined
in Definition 2. Let G𝑡𝑛

𝑖
(G𝑡𝑛
𝑖

⊇ {g𝑡𝑛𝑣 , g𝑡𝑛𝑎 , g𝑡𝑛𝑥 }) represent a
series of item homogeneous hypergraphs for each user group
member. G𝑡𝑛

𝑖
= {𝑉 𝑡𝑛

𝑖
, E𝑡𝑛
𝑖
,W𝑡𝑛

𝑖
,H𝑡𝑛
𝑖
} is constructed based on

each G𝑡𝑛
𝑖

and describes a set of items that a user interacts
with generated in the time slot 𝑡𝑛 .𝑉 𝑡𝑛

𝑖
represents the nodes of

items and E𝑡𝑛
𝑖

denotes a set of hyperedges, which is creating
the link to items which have interactions with a user.

The group-aware hypergraph capture group member’s preference,
while item hypergraphs pay more attention to item-level high-order
representation. Two types of hypergraphs are the fundamental for
our temporal user-item interaction representation. We define our
multi-modal hypergraph CTR problem as follow:

• Problem 1 Click-Through Rate Prediction Given a target user
intent sequence S, and its group-aware hypergraph G𝑡𝑛𝑔 and
item hypergraph G𝑡𝑛

𝑖
, both of them depending on the time

sequence 𝑇 , this problem can be formulated as a function
𝑓 (𝑢,G𝑡𝑛𝑔 ,G𝑡𝑛𝑖 , 𝑖) → 𝑦 for a recommended item 𝑖, where de-
notes 𝑦 the probability that user clicks or not.

2.2 HYPERCTR Framework
HyperCTR framework is illustrated in Figure 3. The framework can
be divided into four components, which are, temporal user behavior
attention module, interests-based user hyperedge generation module,
item hypergraph construction module and prediction module. We
illustrate the sequential user-item interactions in different timestamps
from short-term and long-term granularity. The figure also shows
that the target user has a pairwise relation with one item, while the
item has multi-modal features such as visual, acoustic and textual.
A user might have different tastes on modalities of an item, for
example, a user is attracted by the frames, but might turn out to be
disappointed with its poor sound tracks. Multiple modalities have
varying contributions to user preferences. Each item can be treated
as most current interactions from target user and the time-aware
selection windows capture a time slot user behavior interacting
on various items. All the short and long-term user intent and item
embedding are fed into attention layer to represent each target user
preference.

From group-level aspect, most item own more than one user.
We extract item information from user-items sequential historical
records and generate group-aware hyperedges. We can see in Fig-
ure 3 that there are three different colored areas. Every area denotes
a hyperedge and a group of users connected by one unimodal fea-
ture in each hyperedge. We call this hyperedge Interest-based user
hyperedge, and our task is to learn a user-interest matrix, leading
to construct these hyperedges. Each hypergraph in the figure repre-
sents a group of users interacting with same item in the current time
altogether and have different tendencies. We can then easily learn
the group-aware information to enhance individual’s representation.
Besides, we have the opportunity to infer the preference of each user
to make our prediction more accurate.

According to the group-level hyperedges, we can naturally find
that each item can map to several users, while each user also has
multiple interactions with various items. Here we cluster item in-
formation to build item hyperedges. There are several layers for
each modality which extends from interests-based user hyperedges.
The generation model will then go through the whole time period.
We can now easily capture each higher-order structural relationship
among items and enrich the representation of each items.

We leverage hypergraph convolutional operators to learn rich
representation capturing local and higher-order structural relation-
ships [9]. In the prediction module, we fuse group-aware user rep-
resentation and sequential user representation. We then feed into a
multi-layer perceptron and output the click-through rate prediction.

2.2.1 Temporal User behavior Attention Module. One user’s
historical interaction with items can span multiple times. A straight-
forward way is to apply RNN-type methods to analyze the sequence
S(𝑢, 𝑖1, 𝑖2, 𝑖3, . . .). However, these models fail to capture both short-
term and long-term dependencies. We thus perform a sequential
analysis using the proposed temporal user behavior attention mecha-
nism.

Embedding Layer As depicted in Figure 3, the long-term user
interaction can be represented by all the items the user has interacted
with in a certain time slot 𝑡𝑛 . In the user embedding mapping stage, to
depict user behaviour features, we use their metadata and profiles and
define an embedding matrix E𝑈 for each user u𝑗 . We also maintain
an item embedding matrix M𝐼 ∈ R |I |×𝑑 and a multi-modal attribute
embedding matrix M𝐴 ∈ R |A |×𝑑 . The two matrices project the
high-dimensional one-hot representation of an item or multi-modal
attribute to low-dimensional dense representations. Given a 𝑙-length
time granularity sequence, we apply a time-aware slot window to
form the input item embedding matrix E𝑡𝑛

𝐼
∈ R𝑙×𝑑 . Besides, we

also form an embedding matrix E𝑡𝑛
𝐴

∈ R𝑘×𝑑 for each item from
the entire multi-modality attribute embedding matrix M𝐴, where
𝑘 is the number of item modalities. The sequence representation
E𝑡𝑛 ∈ R𝑛×𝑑 can be obtained by summing three embedding matrices:
E𝑡𝑛 = E𝑈 + E𝑡𝑛

𝐼
+ E𝑡𝑛

𝐴
.

Attention Layer We develop the sequential user behavior en-
coder by utilizing attention mechanism. We proposed to use self-
attention layer, i.e., transformer which has also been applied in time
series prediction [27]. In constrast to CNN, RNN-based approaches
and Markov Chains-based models [14], we adopt self-attention as
the basic model to capture the temporal pattern in user-items inter-
action sequence. A self-attention module generally consists of two
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Figure 3: The structure of HyperCTR: two views of hypergraphs are constructed based on user-item correlations at different time slot
and the Hypergraph Neural Networks is able to capture the correlations in multi-hop connections. The attention layer can capture
dynamic pattern in interaction sequences. Both the group-aware and sequential user embedding fuse to represent each individual,
meanwhile, the target item embedding and a set of homogeneous item-item hypergraph embeddings are considered to learn the final
prediction with the multi-layer perceptron.

sub-layers, i.e., a multi-head self-attention layer and a point-wise
feed-forward network. The multi-head self-attention mechanism
has been adopted for effectively extracting the information selec-
tively from different representation subspaces [40]. The multi-head
self-attention is defined as:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑄,𝐾,𝑉 ) = Concat ( head 1, . . . , head h)𝑊𝑂 (1)

head i = Attention
(
𝑄𝑊

𝑄

𝑖
, 𝐾𝑊𝐾

𝑖
,𝑉𝑊𝑉

𝑖

)
(2)

where the projections are parameter matrices 𝑊𝑄

𝑖
∈ R𝑑×𝑑𝑘 ,

𝑊𝐾
𝑖

∈ R𝑑×𝑑𝑘 , 𝑊𝑉
𝑖

∈ R𝑑×𝑑𝑣 and 𝑊𝑂 ∈ Rℎ𝑑𝑣×𝑑 . The attention
function is implemented by scaled dot-product operation:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = softmax
(
𝑄𝐾𝑇

√
𝑑𝑘

)
𝑉 (3)

where (𝑄 = 𝐾 = 𝑉 ) = E are the linear transformations of the
input embedding matrix, and 1√

𝑑𝑘
is the scale factor to avoid large

values of the inner product, since the multi-head attention module is
mainly build on the linear projections.

In addition to attention sub-layers, we applied a fully connected
feed-forward network, denoted as FFN(.), which contains two linear
transformations with a ReLU activation in between.

FFN(𝑥) = 𝑅𝑒𝐿𝑈 (0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (4)

where𝑊1, 𝑏1,𝑊2, 𝑏2 are trainable parameters.

2.2.2 Hypergraph Convolution Network (HGCN). At each time
slot, we aim to exploit the correlations among users and items for
their high-order rich embeddings, in which the correlated users or
items can be more complex than pairwise relationship, which is
difficult to be modeled by a graph structure. On the other hand, the
data representation tends to be multi-modal, such as the visual, text
and social connections. To achieve that, each user should connect
with multiple items with various modality attributes, while each
item should correlated with several users. This naturally fits the
assumption of the hypergraph structure for data modeling. Compared
with simple graph, on which the degree for all edges is mandatory to
be 2, a hypergraph can encode high-order data correlation using its
degree-free hyperedges [9]. In our work, we construct a G(𝑢, 𝑖) to
present user-item interactions over different time slots. Then, we aim
to distill some hyperedges to build user interest-based hypergraph
G𝑡𝑛𝑔 and item hypergraph G𝑡𝑛

𝑖
to aggregate high-order information

from all neighborhood. We concatenate the hyperedge groups to
generate the hypergraph adjacent matrix H. The hypergraph adjacent
matrix H and the node feature are fed into a convolutional neural
network (CNN) to get the node output representations. We build a
hyperedge convolutional layer 𝑓 (X,W,Θ) as follows:

X(𝑙+1) = 𝜎
(
D−1/2
𝑣 HWD−1

𝑒 H⊤D−1/2
𝑣 X(𝑙)Θ(𝑙)

)
(5)

where define X,D𝑣,D𝑒 and Θ is the signal of hypergraph at 𝑙 layer, 𝜎
denotes the nonlinear activation function. The GNN model is based
on the spectral convolution on the hypergraph.
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2.2.3 Prediction Module and Losses. We want to incorporate
both user sequential embeddings and group-aware high-order in-
formation for a more expressive representation of each user in the
sequence. We propose the fusion layer to generate the representation
of user 𝑢 at 𝑡𝑛 . Existing works on multiple embeddings use concate-
nation as fusion [15], resulting in suboptimal interactions. We utilize
the fusion process that transforms the input representations into a
heterogeneous tensor [23]. We use the user sequential embedding
E𝑡𝑛 and group-aware hypergraph embedding E𝑡𝑛𝑔 . Each vector E is
augmented with an additional feature of constant value equal to 1,
denoted as E = (E, 1)𝑇 . The augmented matrix E is projected into
a multi-dimensional latent vector space by a parameter matrix W,
denoted as W𝑇 E𝑚 . Therefore, each possible multiple feature inter-
action between user and group-level is computed via outer product,
T = 𝑓

(
W𝑇 · Ẽ𝑚

)
, expressed as:

T𝑈 = W𝑇 ·
(
E𝑡𝑛 ⊗ E𝑡𝑛𝑔

)
(6)

Here ⊗ denotes outer product, ˜E𝑚 is the input representation from
user and group level. It is a two-fold heterogeneous user-aspect ten-
sor T𝑈 , modeling all possible interrelation, i.e., user-item sequential
outcome embeddings E𝑡𝑛 and group-aware aggregation features E𝑡𝑛𝑔 .

When predicting the CTR of user for items, we take both sequen-
tial user embedding and item embedding into consideration. We
calculate the user-level probability score 𝑦 to a candidate item 𝑖, to
clearly show how the function 𝑓 works. The final estimation for the
user CTR prediction probability is calculated as:

𝑦 = 𝑓 (𝒆𝑢 , 𝒆𝑖 ;𝚯) (7)

where 𝒆𝑢 and 𝒆𝑖 denote user and item-level embeddings, respectively.
𝑓 is the learned function with parameter 𝚯 and implemented as
a multi-layer deep network with three layers, whose widths are
denoted as {𝐷1, 𝐷2, . . . , 𝐷𝑁 } respectively. The first and second layer
use 𝑅𝑒𝐿𝑈 as activation function while the last layer uses sigmoid
function as Sigmoid(𝑥) = 1

1+𝑒−𝑥 . As for the loss function, we take
an widely used end-to-end training approach, Cross Entropy Loss[8,
28, 39], and it is formulated as:

𝐿(𝒆𝑢 , 𝒆𝑖 ) = 𝑦 log𝜎 (𝑓 (𝒆𝑢 , 𝒆𝑖 )) + (1 − 𝑦) log(1 − 𝜎 (𝑓 (𝒆𝑢 , 𝒆𝑖 ))) (8)

where 𝑦 ∈ {0, 1} is ground-truth that indicates whether the user
clicks the micro-video or not, and 𝑓 represents the multi-layer deep
network.

2.3 Hypergraph Generation Modules
We aim to distill the user-level hypergraph group to enhance the rep-
resentations of input data. We adopt a pre-training way to learn user
group latent preference correlation to different modalities from items.
However, as model trained is prone to suffer from unlabelled data
problem, there is no explicit information to associate user and each
item’s modality. We further incorporate additional self-supervised
signals with mutual information to learn the intrinsic data correla-
tion [20, 40].

2.3.1 Interest-based User Hypergraph Generation Modeling.
We aim to utilize self-supervised learning for the user-interest matrix
F ∈ R𝐿×𝑑 , where 𝐿 denote the user counts and 𝑑 denote the num-
ber of multi-modalities according to items. We trained the weights
{𝜃𝑎, 𝜃𝑏 , 𝜃𝑐 } for each modalities. We define {𝛼, 𝛽,𝛾} to denote the

degree of interest of each modalities from the item features. A thresh-
old 𝛿 was applied to measure which modality contributes the most
for user-item interaction. We first maximize the mutual information
between users 𝑢 and item’s multi-modal attributes 𝑀𝑡𝑛

𝑖𝑛
. For each

user and item, the metadata and attributes provide fine-grained in-
formation about them. We aim to fuse user and multimodal-level
information through modeling user-multimodal correlation. It is thus
expected to inject useful multi-modal information into user group
representation. Given an item 𝑖 and the multi-modal attributes embed-
ding matrix M𝑡𝑛

𝑖𝑖
∈ R |A |×𝑑 , we treat user, item and its associated at-

tributes as three different views denoted as E𝑈 , E𝑡𝑛
𝐼

and E𝑡𝑛
𝐴

. Each E𝑡𝑛
𝐴

is associated with a embedding matrix 𝑀𝑘 ∈ 𝑀𝑡𝑛
𝑖𝑛

= {𝑣𝑡𝑛
𝑖𝑛
, 𝑎
𝑡𝑛
𝑖𝑛
, 𝑥
𝑡𝑛
𝑖𝑛
}.

We design a loss function by the contrastive learning framework
that maximizes the mutual information between the three views.
Following Eq 8, we minimize the User Interest Prediction (UIP) loss
by:

𝐿𝑈 𝐼𝑃

(
𝑢, 𝑖, E𝐴𝑖

)
= E𝑎 𝑗 ∈E𝐴𝑖

[
𝑓
(
𝑢, 𝑖, 𝑎 𝑗

)
− log

∑
𝑎̃∈E𝐴\E𝐴𝑖

exp(𝑓 (𝑢, 𝑖, 𝑎̃))
]

(9)
where we sample negative attributes 𝑎 that enhance the association

among user, item and the ground-truth multi-modal attributes, "\" de-
fines set subtraction operation. The function 𝑓 (·, ·, ·) is implemented
with a simple bilinear network:

𝑓
(
𝑢, 𝑖, 𝑎 𝑗

)
= 𝜎

[(
E⊤
𝐼
· W𝑈 𝐼𝑃 · E𝐴 𝑗

)
· E𝑈

]
(10)

where W𝑈 𝐼𝑃 ∈ R𝑑×𝑑 is a parameter matrix to learn and 𝜎 (.) is the
sigmoid function. We define the loss function 𝐿𝑈 𝐼𝑃 for a single user,
which will can be extended over the user set in a straightforward
way. The outcome from 𝑓 (.) for each user can be constructed as a
user-interest matrix F and compared with the threshold 𝛿 to output
the 𝐿-dimensions vector v ∈ R1×𝐿 .

2.3.2 Item Hypergraph Construction. We exploit how to trans-
form a sequential user-item interactions into a set of homogeneous
item-level hypergraph. We construct a set of homogeneous hyper-
graphs G𝐼 , from node sets 𝐼 as follow:

G𝐼 = {G𝐼 ,group,G𝐼 ,1, . . . ,G𝐼 ,𝑄 } (11)

where G𝐼 , 𝑗 = {𝐼 , E𝐼 , 𝑗 }, and E𝐼 , 𝑗 denote hyperedges in G𝐼 , 𝑗 . Note that
all the homogeneous hypergraphs in G𝐼 share the same node set 𝐼 . For
a node 𝑖 ∈ 𝐼 , a hyperedge introduced in E𝐼 , 𝑗 of G𝐼 , 𝑗 , which connects
to {𝑖 |𝑖 ∈ 𝐼 , (𝑢, 𝑖) ∈ E𝑇𝑛 }, i.e., the vertices in 𝐼 that are directly
connected to 𝑢 by E𝑇𝑛 in time period 𝑇𝑛 . According to Figure 3, in
the user-item sequential interaction network, the user 𝑢 clicks three
items 𝑣 , which corresponds to a hyperedge that connects these three
items in the homogeneous hypergraph G𝐼 . The special homogeneous
hypergraph G𝐼 ,group ∈ G𝐼 are defined as 𝐺

(
𝐼 ,
⋃𝑘
𝑗=1 E𝐼 , 𝑗

)
. Note that

the cardinalities of hyperedge sets in the constructed hypergraph are:
|E𝐼 , 𝑗 | ≤ |𝑈 | and |E𝐼 ,group | ≤ 𝑘 |𝑈 | for 𝑗 ≤ 𝑘. The total number of
hyperedges in the homo-hypergraph is proportional to the number of
nodes and edge types in the input sequence: 𝑂 (𝑘 ( |𝐼 | + |𝑉 |)). Thus,
the transformation easily scales to large inputs.

2.3.3 Information Augmentation. The increasing data sparsity
problem is one of our main motivations in tackling with CTR predic-
tion task. To address the interaction sparsity problem, some informa-
tion augmentation methods have been proposed [21, 35], however,
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Table 1: Statistics of the dataset. (v, a and t denote the dimen-
sions of visual, acoustic, and textual modalities, respectively.)

Dataset #Items #Users #Interactions Sparsity v. a. t.
Kuaishou 3,239,534 10,000 13,661,383 99.98% 2048 - 128
MV1.7M 1,704,880 10,986 12,737,619 - 128 128 128
Movielens 10,681 71,567 10,000,054 99.63% 2048 128 100

they only consider in the case of single modality and cannot han-
dle the scenarios with multi-modal features. We propose two data
augmentation strategies, which use user behavior information and
item multi-modal information to learn the subgraph embedding. We
transform the initial user-item heterogeneous hypergraph into two
homogeneous hypergraphs from the perspective of users and items
respectively.

User Behavior Information Augment Strategy We have uti-
lized temporal user interaction logs to represent user-level embed-
ding. However, the heterogeneous nature between users and items
aggravates the difficulty in network information fusion. A common
observation is that the user usually interacts with only a small num-
ber of items while an item can only be exposed to a small number
of users, which results in a sparse user-item network and limits the
effectiveness of embedding representation. To mitigate the issue, we
utilize the self-supervised user interest matrix F to build the user-user
homogeneous graphs, which contains multiple hyperedges, and is
regarded as hypergraph. It is denoted as G𝑡𝑛𝑔 mentioned in Definition
2.

Item Multi-modal Information Augment Strategy It is a com-
mon observation that if two users both link to the same modality
of items, then they have some common interest [37]. We are thus
motivated to add an edge between them in G𝑡𝑛𝑔 . Similarly, if some
items link to the same set of users, they share the same target user
group. We thus add an hyperedge between them in G𝑡𝑛

𝑖
.

According to the two information augmentation strategies, we
transform the first-order neighbor relations of user-item to second-
order neighbor relations of user-user and item-item, and represent
the complex relationship as a multiple hypergraph structure. Com-
pared with single hop neighbors, in our case nodes have more hop
neighbors, which can be used to alleviate the problem of graph spar-
sity. The items in each hyperedge in G𝑡𝑛

𝑖
maintain some intrinsic

attribute correlation due to which they connect with the same user
preference. Adding edge information while aggregating information
from neighbor nodes can exchange heterogeneous topology infor-
mation between G𝑡𝑛𝑔 and G𝑡𝑛

𝑖
. The information fusion processes on

the two graphs are interdependent.

3 EXPERIMENTS AND RESULTS
3.1 Experimental Settings
3.1.1 Datasets. Existing CTR prediction models mostly utilize
unimodal datasets [18, 20, 26, 32]. In contrast, we introduce multiple
modalities into CTR prediction. As mentioned above, micro-video
datasets contain rich multimedia information and include multiple
modalities - visual, acoustic and textual. We experimented with three
publicly available datasets: Kuaishou, MV1.7M and MovieLens 10M
which are summarized in Table 1.

Kuaishou: This dataset is released by the Kuaishou [17]. There
are multiple interactions between users and micro-videos. Each
behaviour is also associated with a timestamp, which records when
the event happens. The timestamp has been processed to modify the
absolute time, but the sequential temporal order is preserved w.r.t to
the timestamp.

Micro-Video 1.7M: This dataset was proposed in [4]. The in-
teraction types include “click” and “unclick”. Each micro-video is
represented by a 128-dimensional visual embedding vector of its
thumbnail. Each user’s historical interactions are sorted in chrono-
logical order.

MovieLens: The MovieLens dataset is obtained from the Movie-
Lens 10M Data3. We assume that a user has an interaction with a
movie if the user gives it a rating of 4 or 5. We use the pre-trained
ResNet[11] models to obtain the visual features from key frames ex-
tracted from micro-video. For acoustic modality, we separate audio
tracks with FFmpeg6 and adopt VGGish [12] to learn the acoustic
deep learning features. For textual modality, we use Sentence2Vector
[22] to derive the textual features from micro-videos’ descriptions.

3.1.2 Baseline Models. We compare our model with strong base-
lines from both sequential CTR prediction and recommendation.
Our comparative methods are: 1) GRU4Rec [13] based on RNN. 2)
THACIL [4] is a personalized micro-video recommendation method
for modeling user’s historical behaviors, which leverages category-
level and item-level attention mechanisms to model the diverse and
fine-grained interests respectively. It adopts forward multi-head self-
attention to capture the long-term correlation within user behaviors.
3) DSTN [24] learns the interactions between each type of auxiliary
data and the target ad, to emphasize more important hidden informa-
tion, and fuses heterogeneous data in a unified framework. 4) MIMN
[25] is a novel memory-based multi-channel user interest memory
network to capture user interests from long sequential behavior data.
5) ALPINE [17] is a personalized micro-video recommendation
method which learns the diverse and dynamic interest, multi-level
interest, and true negative samples. It utilizes a temporal graph-based
LSTM network to model users’ dynamic and diverse interests from
click sequence, and capture uninterested information from the true
negative sample. It introduces a user matrix to enhance user interest
modeling by incorporating multiple types of interactions. 6) Aut-
oFIS [19] automatically selects important 2𝑛𝑑 and 3𝑟𝑑 order feature
interactions. The proposed methods are generally applicable to many
factorization models and the selected important interactions can be
transferred to other deep learning models for CTR prediction. 7)
UBR4CTR [26] has a retrieval module and it generates a query to
search from the whole user behaviors archive to retrieve the most
useful behavioral data for prediction. The retrieved data is then used
by an attention-based deep network to make the final prediction.

3.1.3 Parameter Settings. We randomly split all datasets into
training, validation, and testing sets with 7:2:1 ratio, and create
the training triples based on random negative sampling. For testing
set, we pair each observed user-item pair with 1000 unobserved
micro-videos that the user has not interacted with before.

3http://files.grouplens.org/datasets/movielens/
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Table 2: Parameter Settings

Methods #Batch size #Dropout #Learning rate
GRU4Rec 200 0.1 0.05
THACIL 128 0.2 0.001

DSTN 128 0.5 0.001
MIMN 200 0.2 0.001

ALPINE 2048 0.3 0.001
AutoFIS 2000 0.6 0.005

UBR4CTR 200 0.5 0.001

For our baseline methods, we use the implementation and settings
provided in their respective papers. More details show as follow
items and Table 2.

• GRU4Rec We applies GRU to model user click sequence for
reproduce this model. We represent the items using embed-
ding vectors rather than one-hot vectors.

• THACIL The number of micro-videos per user is set to 160.
The temporal block size is set to 20. For users having more
items than 160, we just preserve as much as 160 items. For
users having less items, we pad all-zero vectors to augment.

• DSTN We set the dimension of the embedding vectors for
each feature as 10, because the number of distinct features is
huge. We set the number of fully connected layers in DSTN
is 2, each with dimensions 512 and 256.

• MIMN Layers of FCN (fully connected network) are set by
200 × 80 × 2. The number of embedding dimension is set
to be 16, which is the same as the dimension of memory
slots. The number of hidden dimension for GRU in MIU
is set to be 32. Number of memory slots in both NTM and
MIU is a parameter that is examined carefully in the ablation
study section. We take AUC as the metric for measurement
of model performance.

• ALPINE We utilized the 64-d visual embedding to represent
the micro-video. The length of users’ historical sequence is
set to 300. If it exceeds 300, we truncated it to 300; otherwise,
we padded it to 300 and masked the padding in the network.

• AutoFIS We implement the two-stage algorithm AutoFIS
to automatically select important low-order and high-order
feature interactions with FM-based model.

• UBR4CTR The datasets are processed into the format of
comma separated features. A line containing user, item and
context features is treated as a behavior document.

In HyperCTR and all its variants use Adam optimizer. For training,
we randomly initialize model parameters with a Gaussian distribu-
tion and use the ReLU as the activation function. We then optimized
the model with stochastic gradient descent (SGD). We search the
batch size in 128, 256, 512, the the latent feature dimension in 32,
64, 128, the learning rate in 0.0001, 0.0005, 0.001.0.005, 0.01 and
the regularizer in 0, 0.00001, 0.0001, 0.001, 0.01, 0.1. As the find-
ings are consistent across the dimensions of latent vectors, we have
shown the result of 64, a relatively large number that returns good
performance whose details can be found sensitivity analysis.

3.1.4 Evaluation Metrics. We evaluate the CTR prediction per-
formance using two widely used metrics. The first one is Area Under

Table 3: The overall performance of different models on
Kuaishou, Micro-Video 1.7M and MovieLens datasets in %.

Method Kuaishou MV1.7M MovieLens
AUC Logloss AUC Logloss AUC Logloss

GRU4Rec 0.7367 0.5852 0.7522 0.6613 0.7486 0.6991
THACIL 0.6640 0.5793 0.6842 0.6572 0.6720 0.6791
DSTN 0.7722 0.5672 0.7956 0.6492 0.8008 0.6162
MIMN 0.7593 0.5912 0.7486 0.6862 0.7522 0.6751
ALPINE 0.6840 0.5632 0.7130 0.6591 0.7390 0.6163
AutoFIS 0.7870 0.5756 0.8010 0.5404 0.7983 0.5436
UBR4CTR 0.7520 0.5710 0.8070 0.5605 0.8050 0.5663
HYPERCTR 0.8120 0.5548 0.8670 0.5160 0.8360 0.5380
Improv.(%) 3.18% 1.49% 7.43% 4.51% 3.85% 1.03%

ROC curve (AUC) which reflects the pairwise ranking performance
between click and non-click samples. The other metric is log loss.
Log loss is to measure the overall likelihood of the test data and has
been widely used for the classification tasks [29, 30].

3.2 Quantitative Performance Comparison
Table 3 presents the AUC score and Logloss values for all models.
When different modalities re used, all models show an improved per-
formance when the same set of modalities containing visual, acoustic
and textual features are used in MV1.7M and MoiveLens(10M). We
also note that: (a) the performance of our model has improved signif-
icantly compared to the best performing baselines. AUC is improved
by 3.18%, 7.43% and 3.85% on three datasets, respectively, and
Logloss is improved by 1.49%, 4.51% and 1.03%, respectively;
and (b) the improvement in our model demonstrates that the uni-
modal features do not embed enough temporal information which
the baselines cannot exploit effectively. The baseline methods cannot
perform well if the patterns that they try to capture do not contain
multi-modal features in the user-item interaction sequence.

3.3 HyperCTR Component Analysis
3.3.1 Role of Multimodality . To explore the effect of different
modalities, we compare the results on different modalities on the
three datasets, as shown in Table 4. We make the following obser-
vations: 1) Our main method outperforms those with single-modal
features on three datasets. It demonstrates that representing users
with multi-modal information achieves a better performance. It also
demonstrates that the construction of hyperedges can capture user’s
modal-specific preference from graph information. 2) The visual-
modal is the most effective one among three modalities. It can be
naturally understood that if a user clicks what to watch, one usually
pays more attention to the visual information than other modality.
3) The acoustic-modal shows more important information for user
click compared with the textual features. This is expected as the
background music is more attractive to users. 4) Textual modality
contributes least towards click-through rate prediction. This is natu-
ral since the description of text always has low quality, and contains
noisy, special symbols and even irrelevant to the micro-video content
in Kuaishou and MV1.7M datasets. However, in MovieLens data
corpus, this modality has smaller gap with the other modalities. This
is because the text in MovieLens is highly related to the content.
4) Compared with GCN, our proposed model achieved better per-
formance in all datasets. As shown in Table 4, based on Kuaishou
datasets, when only two features are used for graph/hypergraph, our
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Table 4: Performance in terms of AUC & Logloss w.r.t different
modalities on the three datasets in %.

Method Kuaishou MV1.7M MovieLens
AUC Logloss AUC Logloss AUC Logloss

multi-modal 0.8120 0.5548 0.8670 0.5160 0.8360 0.5380
visual-modal 0.8110 0.5560 0.8567 0.5167 0.8259 0.5376
acoustic-modal - - 0.8260 0.5171 0.8134 0.5373
textual-modal 0.7720 0.5756 0.8158 0.5175 0.8123 0.5364
(-) hypergraph 0.8034 0.5554 0.8137 0.5426 0.8064 0.5673
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Figure 4: Performance comparison with different number of
HGCN layers under AUC

model can still obtain slight improvement. With more features in
the other two datasets, our model achieves much better performance
compared with GCN. This phenomenon is consistent with our ar-
gument that when multi-modal features are available, hypergraph
has the advantage of combining such multi-modal information in the
same structure by its flexible hyperedges.

3.3.2 Role of HGCN Layers. To explore how the high-order
connections in the hypergraph can help to uncover hidden item cor-
relations and thus contribute to the final prediction. We compare the
performance of HyperCTR by varying the number of hypergraph
convolutional layers. As shown in Figure 4, when we apply only
one convolution layer for our sequential model, each node embed-
ding aggregates only information from others connected with them
directly by the hyperedge. Our model performs poorly in all three
datasets. By stacking three HGCN layers, it can bring in signifi-
cant improvement compared with a model with just one convolution
layer. We can infer that hyper-graph and HGCN are useful options
for extracting expressive item semantics and it is important to take
the high-order neighboring information in hypergraph into consid-
eration. On Kuaishou and MV1.7M, since the data is very sparse,
it is not necessary to further increase the number of convolutional
layers. Three HGCN layers are enough for extracting the user- and
item-level semantics at different time slots. On MovieLens, more
convolutional layers can further improve the embedding process.
This demonstrates the effectiveness of hypergraph and HGCN in
modeling the temporal user and item correlations.

3.3.3 Role of Time Granularity. An important parameter which
can effect the performance of HyperCTR is the granularity of the
time slot. According to Figure 5, we show the performance of the
proposed model by varying the granularity from 1 month to 18
months. When the granularity is small, we find that the model can-
not achieve the best performance since the interactions are extremely
sparse and not sufficient for building up a set of expressive user
and item embeddings. While enlarging the granularity, we find that
the performance of HyperCTR is increasing in all the datasets. In
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Figure 5: Performance comparison with various time granular-
ity under AUC
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Figure 6: Impact of embedding dimension (top row) and sam-
pled neighbor size (bottom row)

Kuaishou datasets, it reaches the best performance when the time
granularity is set to half a year. However, for MovieLens, the opti-
mized granularity is almost one year since the item in MovieLens is
movie, it propagation speed is relatively slow and the impact time
is relatively long. In MV1.7M datasets, the optimized granularity is
around three months, which is smaller than that for the other datasets
since the micro-video sharing platform attracts more interactions for
each time slot for the temporal user preference representations. If we
further enlarge the granularity, the performance will decrease since
it underestimates the change of user preference and may introduce
noise to the model.

3.4 HyperCTR Model Parameter Study
3.4.1 Hyperparametr Sensitivity Analysis. We study sensitivity
of HyperCTR on the key hyperparameters using the three public
datasets. The hyper-parameters play important roles in HGCN-based
model, as they determine how the node embeddings are generated.
We conduct experiments to analyze the impact of two key parameters
which are the embedding dimension 𝑑 and the size of sampled
neighbors set for each node. According to Figure 6, we can note
that: 1) When 𝑑 varies from 8 to 256, all evaluation metrics increase
in general since better representations can be learned. However,
the performance becomes stable or slightly worse when 𝑑 further
increases. This may due to over-fitting. 2) When the neighbor size
varies from 5 to 40, all evaluation metrics increase at first as suitable
amount of neighborhood information are considered. When the size
of neighbors exceeds a certain value, performance decreases slowly
which may due to irrelevant neighbors. The most ideal neighbor size
is in the range of 15 to 25.

8



3.4.2 Scalability Analysis. As GCN-based networks are complex
and contain such a large number of nodes in the real world applica-
tion scenario, it is necessary for a model being feasible to be applied
in the large-scale datasets. We investigate the scalability of Hyper-
CTR model optimized by gradient descent, which deploys multiple
threads for parallel model optimization. Our experiments are con-
ducted in a computer server with 24 cores and 512GiB memory. We
run experiments with different threads from 1 to 24. We depict in
Figure 7 the speedup ratio vs. the number of threads. The speedup
ratio is very close to linear, which indicates that the optimization
algorithm of the HyperCTR is reasonably scalable.
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Figure 7: Scalability of HyperCTR

3.4.3 Model Training. To depict our model training process, we
plot the learning curves of HyperCTR, as shown in Figure 8. The
three subfigures are the AUC curves of the multi-modal hypergraph
framework when training on three datasets. Every epoch of the 𝑥-
axis is corresponding to the iteration over 5% of the training set.

4 RELATED WORK
CTR prediction. Learning the effect of feature interactions seems

to be crucial for accurate CTR prediction. Factorization Machines
(FMs) [2, 31] are proposed to model pairwise feature interactions
in terms of the vectors corresponding to the involved features. Aut-
oFIS [19] and UBR4CTR [26] further improve FM by removing the
redundant feature interactions and retrieving a limited number of
historic behavior that are most useful for each CTR prediction target.
However, a FM-based model considers learning shallow represen-
tation, and it thus is unable to model the features faithfully. Deep
Neural Networks (DNNs) are exploited for CTR prediction in order
to automatically learn feature representations and higher-order fea-
ture interactions. DSTN [24] integrates heterogeneous auxiliary data
(i.e., contextual, clicked and unclicked ads) in a unified framework
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Figure 8: Learning process of HyperCTR.

based on the DNN model. Further, the other stream of models focus
more on mining temporal patterns from sequential user behavior.
GRU4Rec [13] is based on RNN. It is the first work which uses the
recurrent cell to model sequential user behavior. MIMN [25] applies
the LSTM/GRU operations for modeling users’ lifelong sequential
behavior.

Exploiting multi-modal representation. Some works focus on the
multi-modal representation in the area of multi-modal CTR predic-
tion. Existing multi-modal representations have mostly been applied
to recommender systems and have been grouped into two categories:
joint representations and coordinated representations [34]. Joint rep-
resentations usually combine the uni-modal information and project
into the same representation space [5, 6, 38]. Although, visual or tex-
tual data and are increasingly used in the multi-modal domain [16],
they are suited for situations where all of the modalities are present
during inference, which is hardly guaranteed in social platforms. Dif-
ferent from the joint representations, the coordinated models learn
separate representations for each modality but coordinate them with
constraints [34]. Since the modal-specific information is the factor
for the differences in each modality signals, the model-specific fea-
tures are inevitably discarded via similar constrains. In contrast, we
introduce a novel model which respectively models the information
augmentation and group-aware network problems to address the
limitations in existing works.

Graph Convolution Network. Our proposed model uses the GCNs
technique to represent the users and items, which has been popularly
used for modeling the social media data. In [10] the authors proposed
a general inductive framework which leverages the content infor-
mation to generate node representation for unseen data. In [36] the
authors developed a large-scale deep recommendation engine on Pin-
terest for image recommendation. In their model, graph convolutions
and random walks are combined to generate the representations of
nodes. In [1] the authors proposed a graph auto-encoder framework
based on message passing on the bipartite interaction graph. How-
ever, these methods cannot model the multi-modal data including
cases where data correlation modeling is not straightforward [9].

5 CONCLUSION
In this paper, we model temporal user preferences and multi-modal
item attributes to enhance the accuracy of CTR prediction. We design
a novel HGCN-based framework, named HyperCTR, to leverage
information interaction between users and micro-videos by consid-
ering different modalities. We also refine user presentation from
two aspects: time-aware and group-aware. With the stacking of
hypergraph convolution networks, a self-attention and the fusion
layer, our proposed model provides more accurate modeling of user
preferences, leading to improved performance.

In the future, we will continue to explore how special time point
influence the CTR prediction results. We also would like to incorpo-
rate some cross-platform information (e.g., e-commerce transaction
data) into our system towards better performance.
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